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Preface

Throughout these notes, G will always be a finite group and p a prime. The aim
of the course will be to introduce the audience to the modular representation
theory of finite groups, introduced by Brauer in the 1930s.

These notes are based on Gabriel Navarro’s book [Nav98] and most of the no-
tation and proofs are inherited from there. My notation for finite groups follows
[Isa08] and for complex characters [Nav18] or [Isa06]. Certain notations (such
as the conjugacy class sums) appeared first in Britta Späth’s papers.

Please, let me know of any mistakes at josep.m.martinez@uv.es. This version is
from October 9th, 2024.
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Università degli Studi di Firenze J. Miquel Mart́ınez







LECTURE 1

Brauer characters

1.1. Modules and representations

In these notes we avoid modules as much as possible and only invoke them
whenever necessary. If F is a field (and very soon, F will be a very particular
field) then FG denotes the group algebra of G with coefficients in F . If charpF q

divides |G| then Maschke’s theorem (and therefore Wedderburn’s) no longer
applies and things get a bit more complicated, but also more interesting.

An F -representation of G is a group homomorphism X : G Ñ GLnpF q. By
extending linearly, we may view these as algebra homomorphisms X : FG Ñ

MatnpF q, also known as representations of FG. By restricting, representations
of FG give F -representations of G.

If V is an FG-module, then V induces a representation of FG by choosing a
basis B of V and defining X pxq to be the matrix associated to v ÞÑ vx with
respect to B. Conversely, if V “ Fn and X is a representation of FG, then
V becomes an FG-module by defining vx “ vX pxq for x P FG. Therefore the
study of FG-modules is equivalent to the study of representations of FG (and
therefore to the study of F -representations of G).

Two representations X1,X2 of FG are similar if there is a regular matrix M P

GLnpF q with M´1X1pxqM “ X2pxq for all x P FG. It is straightforward to
check that X1 and X2 are similar if and only if their associated FG-modules are
isomorphic.

We say a representation is irreducible if its associated FG-module is simple.
If FG is semisimple then it is well known that every representation X of G is
similar to a diagonal representation

¨

˚

˝

X1 . . . 0
...

. . .
...

0 . . . Xt

˛

‹

‚

1



2 1.2. Brauer characters

but this is not the case if FG is not semisimple. However we can still guarantee
that X is similar to a representation of the form

¨

˚

˝

X1 . . . ˚
...

. . .
...

0 . . . Xt

˛

‹

‚

where the ˚ is not necessarily zero (so the representation is in upper triangular
block form). A representation of G is irreducible if and only if it is not similar
to a representation in block form

ˆ

˚ ˚

0 ˚

˙

.

1.2. Brauer characters

Let R denote the ring of algebraic integers in C. It is well known that complex
characters take values in R. Let M be a maximal ideal of R containing pR.
Then F :“ R{M is a field of characteristic p and let

˚ : R Ñ F

be the canonical ring epimorphism. Let

U “ tξ P C | ξm “ 1 for some integer m coprime to pu.

Notice that Z˚ “ Z{pZ.

Lemma 1.1. The following hold.

(i) The restriction ˚ : U Ñ Fˆ is a group isomorphism.

(ii) F is the algebraic closure of Z{pZ.

LetG0 “ tx P G | p ∤ opxqu (warning: this is not a subgroup ofG in general!), and
let X : G Ñ GLnpF q be an F -representation. Let g P G0. Since F is algebraically
closed and g has finite order, X pgq is diagonalizable and its eigenvalues lie in
Fˆ. By Lemma 1.1, there exist uniquely determined ξ1, . . . , ξn P U such that
X pgq is similar to diagpξ˚

1 , . . . , ξ
˚
nq. Then the map

φ : G0 Ñ C
g ÞÑ ξ1 ` ¨ ¨ ¨ ` ξn

is the Brauer character afforded by X . We denote by IBrpGq the set of
irreducible Brauer characters (associated to irreducible F -representations). The
set IBrpGq may depend on the maximal ideal M chosen.

Of course, the restriction that g P G0 above is unnecessary to find such ξ1, . . . , ξn P

U. We sill justify this restriction below.
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1. Brauer characters 3

The following is totally straightforward and can be proved in the exact same
way as for complex characters. We denote by x the complex conjugate of x P C.

Lemma 1.2. Let φ be a Brauer character of G. Then

(i) φ P cfpG0q,

(ii) φpg´1q “ φpgq,

(iii) φ : G0 Ñ C defined by φpgq :“ φpgq is a Brauer character of G (and its
associated module is the dual of the module associated to φ),

(iv) H ď G then the restriction φH : H0 Ñ C is a Brauer character of H
(and its associated module is the module associated to φ but viewed as
an FH-module).

Lemma 1.3. A class function ψ P cfpG0q is a Brauer character iff it is a nonzero
nonnegative integral linear combination of irreducible Brauer characters.

Sketch of proof. The if direction is immediate, and the only if direction
follows by writing the F -representation affording ψ in upper diagonal block
form and noticing that ψ is the sum of the Brauer characters appearing in the
diagonal. □

We can now justify why we restricted ourselves to G0. We’ll use the following
elementary group theoretical fact quite often: every element g P G can be written
as g “ gpgp1 where gp has p-power order, gp1 has order coprime to p and gpgp1 “

gp1gp. Further, both belong to xgy.

Lemma 1.4. If X : G Ñ GLnpF q is an F -representation affording the Brauer
character φ, then for all g P G we have

tracepX pgqq “ φpgp1q˚.

Proof. There is no loss in assuming that φ is irreducible and that G “ xgy.
Therefore X : G Ñ Fˆ is a group homomorphism and X pgq “ X pgpqX pgp1q.
Now X pgpq has p-power order in Fˆ so X pgpq “ 1 and the result follows. □

Proposition 1.5. The set IBrpGq is linearly independent.

Sketch of proof. Use the fact that the set of trace functions of representations
G Ñ GLnpF q is linearly independent (see [Nav98, Theorem 1.19]) and Lemma
1.4. □

Definition 1.6. If χ P CharpGq then χ0 denotes the restriction of χ to G0.

Università degli Studi di Firenze J. Miquel Mart́ınez



4 1.3. Decomposition numbers

More notation. We let S be the localization of R at M , that is

S “ tr{s | r P R, s P RzMu

and extend ˚ to an homomorphism ˚ : S Ñ F by

pr{sq˚ “ r˚ps˚q´1.

Perhaps it is useful to mention here that an integer belongs to M if and only if
it is divisible by p.

The following deep theorem is [Nav98, Theorem 2.7].

Theorem 1.7. If X : G Ñ GLnpCq is a complex representation, then there is a
representation Y of G similar to X with entries in S.

We extend ˚ to a ring homomorphism MatnpSq Ñ MatnpF q by applying ˚ to
the entries of a matrix A P MatnpSq. Notice that detpA˚q “ detpAq˚. We also
extend it to a ring homomorphism Srxs Ñ F rxs. It is straightforward to check
that if a polynomial ppxq P Srxs has all roots α1, . . . , αt in S then ppxq˚ has
roots α˚

1 , . . . , α
˚
t .

Lemma 1.8. If X : G Ñ GLnpCq affords χ with entries in S. Then X ˚ : G Ñ

GLnpF q defined by

X ˚pgq :“ X pgq˚

affords the Brauer character χ0.

Proof. First notice that X ˚ : G Ñ GLnpF q is in fact an homomorphism (we
are applying ˚ to all the entries). Let g P G0 and let ξ1, . . . , ξt P U be the
eigenvalues of X pgq. Using that detpxI ´ X pgqq˚ “ detpxI ´ X ˚pgqq we have
that ξ˚

1 , . . . , ξ
˚
t are the eigenvalues of X ˚pgq. □

It is true (but much harder and not necessary for our purposes) that we may
find a represenetation with entries in R affording any χ P CharpGq. However, it
will be convenient to work in S.

It follows from Lemma 1.8 and Theorem 1.7 that for all χ P CharpGq we have
that χ0 is a Brauer character of G.

1.3. Decomposition numbers

Since IBrpGq is a linearly independent set of C, it follows that we may write

χ0 “
ÿ

φPIBrpGq

dχφφ

for certain uniquely defined integers (which are nonnegative by 1.3). The num-
bers dχφ are called the decomposition numbers.
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1. Brauer characters 5

Theorem 1.9. The set IBrpGq is a basis of cfpG0q. In particular, |IBrpGq|

coincides with the number of conjugacy classes of p-regular elements of G.

Proof. By Proposition 1.5 it suffices to show that any β P cfpG0q can be written
as a linear combination of IBrpGq. Now, let δ P cfpGq be any extension of β (so
that δ0 “ β). Then using that IrrpGq is a basis of cfpGq we may write

δ “
ÿ

χPIrrpGq

aχχ

and therefore

β “
ÿ

χPIrrpGq

aχχ
0 “

ÿ

χPIrrpGq

aχ

¨

˝

ÿ

φPIBrpGq

dχφφ

˛

‚

and we are done. □

We define the decomposition matrix of G by

D “ pdχφqχPIrrpGq,φPIBrpGq.

(That is, Brauer characters in the columns, ordinary characters in rows.) This
matrix is completely independent of the maximal ideal M chosen.

Problem 1.10. Prove that the decomposition matrix has maximum rank.

As a consequence, for any φ P IBrpGq there is some χ P IrrpGq with dχφ ‰ 0.

Problem 1.11. If p does not divide |G|, prove that IBrpGq “ IrrpGq.

(Hint: use Maschke and Wedderburn to obtain
ř

φPIBrpGq φp1q2 “ |G|.)

The Cartan matrix is defined by C “ DtD, and it has many interesting and
deep properties which, unfortunately, we shall not discuss.

1.4. Projective indecomposable characters

Let φ P IBrpGq. We define the projective indecomposable character asso-
ciated to φ by

Φφ :“
ÿ

χPIrrpGq

dχφχ.

Here we will only prove the necessary facts for our purposes, but these characters
are certainly very interesting. They are a basis of the set of class functions of G
which vanish off the p-regular conjugacy classes, and they have some properties
connected to the Cartan matrix. For more on these characters, see [Nav98,
Chapter 2].

Proposition 1.12. Let φ P IBrpGq and g P G with p | opgq. Then Φφpgq “ 0.
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6 1.5. Kernels of Brauer characters

Proof. Let x P G0. By the second orthogonality relation for complex charac-
ters, we have that

ÿ

χPIrrpGq

χpgqχpxq “ 0

but the LHS equals

ÿ

χPIrrpGq

χpgq

¨

˝

ÿ

φPIBrpGq

dχφφpxq

˛

‚“
ÿ

φPIBrpGq

φpxq

¨

˝

ÿ

χPIrrpGq

dχφχpgq

˛

‚

“
ÿ

φPIBrpGq

Φφpgqφpxq

which implies that the linear combination
ÿ

φPIBrpGq

Φφpgqφ “ 0

and since IBrpGq is a linearly independent set, this implies Φφpgq “ 0 for p-
singular g. □

Corollary 1.13 (Dickson). If φ P IBrpGq then |G|p divides Φφp1q.

Proof. Notice that Φφ is a character of G. Then if P P SylppGq we have pΦφqP

is a character of P and therefore rpΦφqP , 1P s is a nonnegative integer. Now Φφ
vanishes in every element of P except 1, which means that

rpΦφqP , 1P s “
1

|P |

ÿ

xPP

Φφpxq “
Φφp1q

|P |

and we are done. □

1.5. Kernels of Brauer characters

Let φ P IBrpGq be afforded by the F -representation X . Then we define

kerpφq :“ kerpX q.

Notice that, unlike with ordinary characters, we cannot guarantee kerpφq is the
set of elements g P G where φpgq “ φp1q since φpgq is only defined for p-regular
elements g. (It is true that if g P G0 then g P kerpφq if and only if φpgq “ φp1q,
see [Nav98, Lemma 6.11].)

If φ P IBrpGq with N Ď kerpφq then we can define φpNgq “ φpgp1q and φ P

IBrpG{Nq (check this! Can you find an F -representation that affords φ?). We
identify φ with φ and thus view IBrpG{Nq as a subset of IBrpGq.

Theorem 1.14. Let X be an irreducible F -representation of G. Then OppGq Ď

kerpX q.
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1. Brauer characters 7

Proof. Let P “ OppGq. We have that FP has a unique simple module, the
trivial one. Let V be a (simple) FG-module affording X . Viewing V as an FP -
module we have that if 0 ă W ď V is a simple FP -submodule, W Ď CV pP q.

Now using that P Ÿ G it is straightforward to see that CV pP q is G-invariant and
thus it is an FG-submodule of V . Since V is simple it follows that CV pP q “ V ,
or in other words that vx “ v for all v P V and x P P . Therefore, for x P P we
have that X pxq “ I and we are done. □

Problem 1.15. A Brauer character φ is said to be linear if φp1q “ 1. Denote
by LinBrpGq the set of linear Brauer characters of G. Prove that

(i) LinBrpGq Ď IBrpGq,

(ii) if N “ Op1

pGqG1 (the smallest normal subgroup N such that G{N is
abelian and of p1-order), χ ÞÑ χ0 is a bijection IrrpG{Nq Ñ LinBrpGq,

(iii) |LinBrpGq| “ |G : G1|p1,

(iv) LinBrpGq is a finite group,

(v) the map from (ii) is a group isomorphism.
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LECTURE 2

Blocks

If x P G then we denote by ClGpxq the conjugacy class of G containing x. Then

ClGpxq` “
ÿ

yPClGpxq

y P ZpKGq

for any field K, and in fact we have that tClGpxq` | x P G{ „u is a basis of
ZpKGq (we denote by G{ „ a set of representatives of the conjugacy classes of
G).

It is well known that if χ P IrrpGq then χpxq P R for all x P G, and in fact

|ClGpxq|χpxq

χp1q
P R.

Thus, χ defines an algebra homomorphism

ωχ : ZpCGq Ñ C

by setting

ωχpClGpxq`q “
|ClGpxq|χpxq

χp1q
P R.

In fact, if X is a complex representation affording χ, we have that X pClGpxq`q “

ωχpClGpxq`qIn.

Using the fact that ωχpClGpxq`q P R we may construct an F -linear map

λχ : ZpFGq Ñ F

ClGpxq` ÞÑ ωχpClGpxq`q˚

and extending linearly.

Let φ P IBrpGq be afforded by an F -representation X . Notice that X pClGpxq`q

is a scalar matrix, so we may write

X pClGpxq`q “ λφpClGpxq`qIn

and again, this defines an F -linear map λφ : ZpFGq Ñ F .

Definition 2.1. The p-blocks of G are the equivalence classes in IrrpGqYIBrpGq

under the relation χ „ φ if λχ “ λφ.

9



10 2.1. Decomposition matrices for blocks

If B is a p-block then IrrpBq “ B X IrrpGq and IBrpBq “ B X IBrpGq. You will
have to believe me for the moment, but these do not depend on the choice of
the maximal ideal M (we’ll see why later, maybe). Also, it makes sense to set
the notation λB :“ λχ for whatever χ P IrrpBq Y IBrpBq. We denote by blpψq

the block to which some ψ P IrrpGq Y IBrpGq belongs.

Theorem 2.2. Let χ P IrrpGq and φ P IBrpGq be such that dχφ ‰ 0. Then
λχ “ λφ.

Proof. Let X be a representation taking values in S that affords χ. Then X ˚

is an F -representation affording χ0. Now X ˚ is similar to an F -representation
X 1 in upper-triangular block form.

Since dχφ ‰ 0 then one of the representations Y appearing in the block diagonal
of X 1 affords φ. Now for all x P G, X 1pClGpxq`q “ λχpClGpxq`qIχp1q, which

implies that YpClGpxq`q “ λχpClGpxq`qIφp1q as desired. □

It follows from the above that

IBrpBq “ tφ P IBrpGq | dχφ ‰ 0 for some χ P IrrpBqu.

Notice also that it implies that, after rearranging by blocks, the decomposition
matrix has block diagonal form:

D “

¨

˚

˚

˚

˝

DB1 0 . . . 0
0 DB2 . . . 0

0 . . .
. . . 0

0 . . . 0 DBt

˛

‹

‹

‹

‚

.

SinceD has rank |IBrpGq|, notice that every submatrixDB has rank |IBrpBq|. In
particular, lpBq :“ |IBrpBq| ď | IrrpBq| “: kpBq. We might see that kpBq “ lpBq

actually implies kpBq “ 1. The set of p-blocks of G is denoted by BlpGq.

2.1. Decomposition matrices for blocks

Our next goal is to show that if B P BlpGq then DB is not a block diagonal
matrix (independently of any rearrangements of rows and columns).

2.1.1. The Brauer graph. We define a graph on IrrpGq as follows: we
link χ and ψ if there is φ P IBrpGq with dχφ ‰ 0 ‰ dψφ. The graph containing
IrrpGq as vertices and with connected vertices the linked characters is known as
the Brauer graph. We know that any B P BlpGq satisfies that IrrpBq is the
union of connected components of this graph. Our next goal is to see that the
connected components of this graph are precisely the sets IrrpBq with B P BlpGq.
If A Ď IrrpGq is the union of connected components of the Brauer graph, then
we denote by

IBrpAq “ tφ P IBrpGq | dχφ ‰ 0 for some χ P Au.
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2. Blocks 11

Proposition 2.3 (Osima). Let A as above. If g P G0 and x P G then
ÿ

χPA
χpgqχpxq “

ÿ

φPIBrpAq

φpgqΦφpxq

Proof. First notice that φ P IBrpAq and χ P IrrpGq then dχφ ‰ 0 implies χ P A
(indeed, since φ P IBrpAq there is ψ P A with dψφ ‰ 0, so χ and ψ are connected,
but since A is a union of connected components we have χ P A. It follows that

ÿ

χPA
dχφχ “ Φφ.

Thus

ÿ

χPA
χpgqχpxq “

ÿ

χPA

¨

˝

ÿ

φPIBrpGq

dχφφpgq

˛

‚χpxq “

“
ÿ

φPIBrpAq

˜

ÿ

χPA
dχφχpxq

¸

φpgq “
ÿ

φPIBrpAq

Φφpxqφpgq

as desired. □

Corollary 2.4 (Weak block orthogonality). Let B P BlpGq, g P G0 and x P

GzG0. Then
ÿ

χPIrrpBq

χpgqχpxq “ 0.

Proof. Apply Proposition 2.3 to IrrpBq “ A and use Proposition 1.12 to get
that the RHS vanishes. □

2.1.2. The primitive central idempotents of CG. We say an element
e in an algebra A is an idempotent of A if e2 “ e and e ‰ 0. Further, we say e
is a primitive central idempotent if it can not be written as a sum of central
idempotents. It is a classical fact that if e is a central idempotent in A then e
is primitive if and only if eA is an indecomposable (two-sided) ideal of A (i.e. it
can not be written as a direct sum of proper ideals).

If we want to decompose FG as a direct sum of indecomposable FG-modules, it
might be convenient to find the primitive central idempotents of FG. We have
mentioned before that the primitive central idempotents of CG are given by

eχ “
χp1q

|G|

ÿ

gPG

χpg´1qg

where χ runs over IrrpGq, and that eχCG is the indecomposable two-sided ideal
of CG corresponding to χ. We will use the eχ’s to build the primitive central
idempotents of FG in Section 2.3.
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12 2.1. Decomposition matrices for blocks

If ψ P IrrpGq then notice that

eψ “
ψp1q

|G|

ÿ

xPG{„

ψpx´1qClGpxq`.

Thus if χ P IrrpGq we have that, by orthogonality of characters,

ωχpeψq “
ψp1q

|G|χp1q

ÿ

xPG{„

ψpx´1qχpxq|ClGpxq| “
ψp1q

χp1q
rψ, χs “ δχψ.

If A Ď IrrpGq we will denote by

fA :“
ÿ

χPA
eχ.

Since eχ P ZpCGq it follows that we may write

fA “
ÿ

xPG{„

fApClGpxq`qClGpxq`.

Let us now work out a formula for the coefficient fApClGpxq`q. By using the
formula above, we have

ÿ

χPA
eχ “

ÿ

χPA

1

|G|

¨

˝

ÿ

xPG{„

χp1qχpx´1qClGpxq`

˛

‚“

“
1

|G|

ÿ

xPG{„

˜

ÿ

χPA
χp1qχpx´1q

¸

ClGpxq`

and we conclude that

fApClGpxq`q “
1

|G|

ÿ

χPA
χp1qχpx´1q

and fortunately, Proposition 2.3 gives an alternative description for these coef-
ficients!

Proposition 2.5. Let A Ď IrrpGq be a union of connected components of the
Brauer graph. Then

(i) fA P ZpSGq (that is, fApClGpxq`q P S),

(ii) fApClGpxq`q “ 0 if x R G0.

Proof. Let x P GzG0. By Proposition 2.3, we have

fApClGpxq`q “
1

|G|

ÿ

φPIBrpAq

φp1qΦφpx´1q.

Now since x´1 is not p-regular and Φφ vanishes outside G0, we conclude that
fApClGpxq`q “ 0, and part (ii) follows.
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2. Blocks 13

If x P G0 then by the same result but reversing the role of x´1 and 1 we get

fApClGpxq`q “
1

|G|

ÿ

φPIBrpAq

φpx´1qΦφp1q

and since we know that φpx´1q is a sum of elements in U Ď R then it suffices
to show that

Φφp1q

|G|
P S

but this holds because |G|p divides Φφp1q (since M XZ “ pZ, an integer belongs
to M if and only if it is divisible by p). □

We extend our homomorphism ˚ : S Ñ F even more to an homomorphism
SG Ñ FG by

˜

ÿ

xPG

axx

¸˚

“
ÿ

xPG

a˚
xx

and notice that it maps ZpSGq onto ZpFGq by
¨

˝

ÿ

xPG{„

axClGpxq`

˛

‚

˚

“
ÿ

xPG{„

a˚
xClGpxq`.

If z P ZpSGq and χ P IrrpGq then ωχpzq˚ “ λχpz˚q.

Finally, we get to the main result of this section.

Theorem 2.6. If A Ď IrrpGq is such that fA P ZpSGq then there is Ω Ď BlpGq

with

A “
ď

BPΩ

IrrpBq.

In other words, if χ P A then Irrpblpχqq Ď A.

Proof. If χ P IrrpGq, then have that ωχpfAq ‰ 0 if and only if χ R A (and
ωχpfAq “ 1 if χ P A). Since fA P ZpSGq, by the above discussion this implies
that λχpf˚

Aq “ 0 if χ R A and λχpf˚
Aq “ 1 otherwise. Since λχ “ λψ if ψ and χ

belong to the same block, it follows that A contains every ordinary character in
the block of χ or it contains none. □

Corollary 2.7. If B P BlpGq then IrrpBq is a single connected component of
the Brauer graph. In particular, DB is not of the form

ˆ

˚ 0
0 ˚

˙

.
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14 2.2. Blocks of defect zero

Proof. Assume A Ď IrrpBq is a connected component of the Brauer graph.
By Proposition 2.5, fA P ZpSGq so A contains all of IrrpBq and the first part
follows. For the second, notice that such a form of the decomposition matrix
would imply that there are two distinct connected components inside IrrpBq. □

2.2. Blocks of defect zero

The following results were proved by Brauer and Nesbitt, and can be deduced
from the results in the previous section.

Theorem 2.8 (Brauer–Nesbitt). Let B P BlpGq. Then following are equivalent:

(i) kpBq “ lpBq,

(ii) if χ P IrrpBq and all g P GzG0 we have χpgq “ 0,

(iii) there is χ P IrrpBq with χp1qp “ |G|p,

(iv) kpBq “ 1.

Proof. If kpBq “ lpBq, then DB is a square matrix of maximal rank and
therefore it is invertible. Write pDBq´1 “ paφχq and for a fixed χ P IrrpBq

compute

ÿ

φPIBrpBq

aφχΦφ “
ÿ

φPIBrpBq

aφχ

¨

˝

ÿ

ψPIrrpBq

dψφψ

˛

‚“
ÿ

ψPIrrpBq

¨

˝

ÿ

φPIBrpBq

aφχdψφ

˛

‚ψ

And notice that
ÿ

φPIBrpBq

aφχdψφ

is precisely the value entry of the matrix DBpDBq´1 in the coordinate corre-
sponding to χψ, i.e. δχψ. Therefore

ÿ

φPIBrpBq

aφχΦφ “ χ

and it follows that χ vanishes in the p-singular elements, so (i) implies (ii).

Now if (ii) holds then rχP , 1P s “ 1
|P |

ř

xPP χpxq “
χp1q

|P |
must be an integer, so

(iii) follows.

If (iii) holds then

eχ “
χp1q

|G|

ÿ

xPG

χpx´1qx

belongs to ZpSGq so by Theorem 2.6 we have that tχu “ IrrpBq and (iv) holds.

Since lpBq ą 0, (iv) implies (i). □
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2. Blocks 15

In fact, the following follows too, but this needs a fact we have not proved: that
φ is a Z-linear combination of tχ0 | χ P IrrpBqu.

Corollary 2.9. If IrrpBq “ tχu then IBrpBq “ tχ0u.

This is a phenomenon that can only happen in blocks with a unique Brauer
character.

Problem 2.10. Let B P BlpGq with lpBq ą 1. Then there is χ P IrrpBq with
χ0 R IBrpBq.

2.3. The primitive central idempotents of FG

We devote this last section to connecting the module-theoretic point of view of
blocks to our character-theoretic one. Let B P BlpGq and recall that we write

fB :“ fIrrpBq “
ÿ

χPIrrpBq

eχ.

Since fB P ZpSGq we may apply the ˚ homomorphism to obtain an element of
eB :“ pfBq˚ P ZpFGq.

Since 1 “
ř

χPIrrpGq eχ it follows that 1 “
ř

BPBlpGq eB (notice that one is the

identity in C and the other one in F ).

Recall that the Jacobson radical JpAq of an F -algebra A is the intersection of
all maximal right ideals of A.

Theorem 2.11. The set of all primitive idempotents of ZpFGq is teB | B P

BlpGqu, tλB | B P BlpGqu is the set of all algebra homomorphisms ZpFGq Ñ F
and λBpeB1q “ δBB1. Furthermore

JpZpFGqq “
č

BPBlpGq

kerpλBq.

Since the eB’s are primitive central idempotents, it follows that FGeB is an
indecomposable two-sided ideal of FG (so it can not be written as a direct sum
of proper two-sided ideals). Further, using that 1 “

ř

BPBlpGq eB we also get

FG “
à

BPBlpGq

FGeB.

Many authors write B “ FGeB. The element eB is the identity in FGeB.

Theorem 2.12. Let B P BlpGq.

(i) Let χ P IrrpGq be afforded by the CG-module V . Then χ P IrrpBq if and
only if V fB “ V . Otherwise, V fB “ 0.
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16 2.3. The primitive central idempotents of FG

(ii) Let φ P IBrpGq be afforded by the FG-module V . Then φ P IBrpBq if
and only if V eB “ V . Otherwise V eB “ 0.

In summation, we have a decomposition FG “
À

B and to decide whether
ψ P IrrpGq Y IBrpGq belongs to B we check that λψpeBq ‰ 0.
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LECTURE 3

Defect groups

Let x P G. We denote by δpClGpxqq “ tDg | D P SylppCGpxqq, g P Gu, and
these are called the defect groups of the conjugacy class ClGpxq. If Q,P are
p-subgroups of G, we write Q ĎG P if Q is contained in a G-conjugate of P .

3.1. The Min–Max theorem

Recall from the previous chapter that if B P BlpGq then we denoted fB “
ř

χPIrrpBq eχ and that eB “ pfBq˚ is the primitive central idempotent generating

the block B.

Recall that we wrote

fB “
ÿ

xPG{„

fBpClGpxq`qClGpxq` P ZpCGq.

Similarly, we may write

eB “
ÿ

xPG{„

aBpClGpxq`qClGpxq` P ZpFGq

where aBpClGpxq`q “ fBpClGpxq`q˚ (recall that these coefficients lie in S by
Proposition 2.5).

We know that if B,B1 P BlpGq then λBpeB1q “ δBB1 . Applying this to the
previous equality we get that there are some x P G{ „ such that

aBpClGpxq`qλBpClGpxq`q ‰ 0.

A class ClGpxq satisfying the above condition is known as a defect class for B.

Theorem 3.1. Let B P BlpGq and x, y P G. If

aBpClGpxq`qλBpClGpxq`q ‰ 0 ‰ aBpClGpyq`qλBpClGpyq`q

then δpClGpxqq “ δpClGpyqq.

Definition 3.2. The defect groups of a block B are the defect groups of a
defect class.

We denote by δpBq the set of defect groups of B. We write BlpG|Dq for the set
of blocks of G with defect group D.

17



18 3.2. Numerical defect and height zero characters

Theorem 3.3 (Min–Max). Let B P BlpGq, DB P δpBq, g P G and Dg P

δpClGpgqq. The following hold.

‚ If λBpClGpgq`q ‰ 0 then DB ĎG Dg.

‚ If aBpClGpgq`q ‰ 0 then Dg ĎG DB.

This approach might seem a bit weird and in fact the result is somewhat circular.
Defect groups are usually defined in a different way, but such that the Min–Max
theorem applies. This ends up proving that the defect groups are well defined
by obtaining Theorem 3.1 as a corollary of the Min–Max theorem.

3.2. Numerical defect and height zero characters

Write |G|p “ pa. We define the numerical defect of a block B P BlpGq to be
the nonnegative integer dpBq such that

pa´dpBq “ mintχp1qp | χ P IrrpBqu.

It follows that if |G|p “ pa then for every χ P IrrpGq we may write

χp1qp “ pa´dpBq`hχ

for some nonnegative integer hχ, called the height of χ. The characters χ P

IrrpBq such that dpBq “ χp1qp (i.e., hχ “ 0) are called height zero characters.
We denote by Irr0pBq the set of height zero characters of B.

Our next goal is to prove the following

Theorem 3.4. Let B P BlpGq and D P δpBq. Then |D| “ pdpBq.

We need some previous results, which we will not prove.

Proposition 3.5. If φ P IBrpBq then φ is a Z-linear combination of tχ0 | χ P

IrrpBqu.

Proof. See [Nav98, Corollary 2.16 and Lemma 3.16]. □

If χ P IrrpGq it is well known χp1q divides |G|, however this is not true for Brauer
characters (it is not even true that φp1qp divides |G|p).

Problem 3.6. Prove that pa´dpBq “ mintφp1qp | φ P IBrpBqu.

Now, a brief digression to introduce the so-called p-adic valuation ν. If n P Zzt0u

with |n|p “ pa then we write νpnq “ a. Notice that νpnmq “ νpnq ` νpmq. We
extend naturally ν : Qˆ Ñ Z by νpp{qq “ νppq ´ νpqq and this still satisfies
that νpxyq “ νpxq ` νpyq for x, y P Qˆ. We take the convention that νp0q “ 8.
With the p-adic valuation one can define an absolute value which in turn leads
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3. Defect groups 19

to the definition of the p-adic completion of Q. Notice that if χ P IrrpBq then
νpχp1qq “ νp|G|q ´ dpBq ` hχ.

We have to define yet another set, in this case a maximal ideal of S. Indeed, we
write

P :“ tr{s | r P M, s P RzMu “ kerp˚: S Ñ F q.

The following is our necessary result on valuations.

Lemma 3.7. The following hold.

(i) S X Q “ tq P Q | νpqq ě 0u,

(ii) P X Q “ tq P Q | νpqq ą 0u,

(iii) tq P Q | νpqq “ 0u is the set of units of the ring S X Q.

Proof. See [Nav98, Lemma 3.21]. □

Before the proof of our current goal, we come up with a way to compute
aBpClGpxq`q which will be essential. We have defined eB “ pfBq˚ where fB “
ř

χPIrrpBq eχ. Recall that by setting A “ B we obtained in Section 2.1.2 a the

decomposition fB “
ř

xPG{„ fBpClGpxq`qClGpxq`. Since fBpClGpxq`q P S by

Proposition 2.5, we have that aBpClGpxq`q “ fBpClGpxq`q˚. By the same re-
sult, if x P GzG0 we obtain that aBpClGpxq`q “ 0 (this shows that defect classes
must be formed by p-regular elements).

Therefore we focus on obtaining said formula for p-regular elements. By using
Proposition 2.3 and the formula before Proposition 2.5, if x P G0, we obtain

aBpClGpxq`q “

¨

˝

1

|G|

ÿ

φPIBrpBq

φpx´1qΦφp1q

˛

‚

˚

.

Notice that
Φφp1q

|G|
P S because |G|p divides Φφp1q by Corollary 1.13. Since

φpx´1q P R and ˚ is a ring homomorphism, we obtain

(3.2.1) aBpClGpxq`q “
ÿ

φPIBrpBq

ˆ

Φφp1q

|G|

˙˚

φpx´1q˚.

Proof of Theorem 3.4 Let a “ νp|G|q and write |D| “ pf . Our goal is
to show f “ dpBq. Let x P G be such that ClGpxq be a defect class for B.
We have that D P δpClGpxqq, so Dg P SylppCGpxqq for some g P G. Since
|G : CGpxq| “ |ClGpxq| we obtain

pa´f “ |ClGpxq|p

or in other words, a´ f “ νp|ClGpxq|q.
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20 3.2. Numerical defect and height zero characters

Using that ClGpxq is a defect class for B we have

λBpClGpxq`q ‰ 0

so if χ P IrrpBq we have
ˆ

χpxq|ClGpxq|

χp1q

˙˚

‰ 0.

which means that

χpxq|ClGpxq|

χp1q
P SzP.

Recall that χpxq P R, so if

|ClGpxq|

χp1q
P P

then, using that P is an ideal of S, we have

χpxq|ClGpxq|

χp1q
P P

which is false. This forces |ClGpxq|

χp1q
R P so, by Lemma 3.7, ν

´

|ClGpxq|

χp1q

¯

ď 0.

Therefore νp|ClGpxq|q “ a´ f ď νpχp1qq “ a´ dpBq ` hχ. By taking some χ of
height zero we obtain that dpBq ď f .

Now since ClGpxq is a defect class for B, then we also have aBpClGpxq`q ‰ 0. By
using the expression from 3.2.1, we obtain that

ÿ

φPIBrpBq

ˆ

Φφp1q

|G|

˙˚

φpx´1q˚ ‰ 0

so there is some φ P IBrpBq with φpx´1q R P (because ˚ vanishes in P). Since
φ is a linear combination of tχ0 | χ P IrrpBqu it follows that some χ P IrrpBq

satisfies χpx´1q R P. Since |ClGpxq| “ |ClGpx´1q| we have

χpx´1q|ClGpx´1q|

χp1q
“
χpxq|ClGpx´1q|

χp1q
“ ωχpClGpxq`q P R

and P is an ideal of S, it follows that χp1q

|ClGpxq|
R P, so we conclude that

νpχp1qq ´ νp|ClGpxq|q “ ν

ˆ

χp1q

|ClGpxq|

˙

ď 0

by Lemma 3.7. Thus νpχp1qq “ a ´ dpBq ` hχ ď a ´ f “ νp|ClGpxq|q so
f ď dpBq ´ hχ and then f ď dpBq, as desired. □
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3. Defect groups 21

3.3. OppGq is back

Recall that an element x of some F -algebra A is called nilpotent if there is some
n P N such that xn “ 0. Further, by [Nav98, Theorem 1.8], the Jacobson
radical JpAq is the unique maximal nilpotent right ideal of A.

Lemma 3.8. Let x P G and assume that ClGpxq X CGpOppGqq “ H. Then
ClGpxq` P JpZpFGqq. In particular, ClGpxq` is nilpotent.

Proof. It suffices to check that ClGpxq` P JpZpFGqq. By Theorem 2.11, we
should check that ClGpxq` lies in the kernel of λB for all B P BlpGq (or equiv-
alently, in the kernel of λφ for any φ P IBrpGq. Let X be an irreducible F -
representation of G afforing φ. By the definition of λφ, we want to prove that
X pClGpxq`q “ 0.

Write P “ OppGq. We have that P acts by conjugation on ClGpxq. Let Ω “

txy | y P P u Ď ClGpxq (that is, the P -orbit of x under this action). If y P P then
xy “ xx´1y´1xy P xP , that is, every P -conjugate of x is contained in xP . Now,
we know that P Ď kerpX q, so X pxtq “ X pxq for all t P P , so X is constant on
xP , and by the previous argument, it is constant on Ω. Since |Ω| is divisible by
p (because ClGpxq X CGpOppGqq “ Hq, it follows that

ÿ

x0PΩ

X px0q “ |Ω|X pxq “ 0

(because F has characteristic p). If Ω1, . . . ,Ωt is the set of P -orbits on ClGpxq

with representatives x1, . . . , xt, then by applying the previous argument to the
xi’s we get

X pClGpxq`q “

t
ÿ

i“1

˜

ÿ

zPΩi

X pzq

¸

“

t
ÿ

i“1

|Ωi|X pxiq “ 0,

as desired. □

Corollary 3.9. Let B P BlpGq. Then OppGq is contained in every defect group
of B.

Proof. Let x P G be such that ClGpxq is a defect class for B. Since λBpClGpxq`q

by Lemma 3.8 we have that ClGpxq X CGpOppGqq ‰ H. Now OppGq Ÿ G so
CGpOppGqq Ÿ G which means that ClGpxq Ď CGpOppGqq, so OppGq Ď CGpxq.
Thus if we take D P SylppCGpxqq or any G-conjugate, we obtain OppGq Ď D. □

We will not prove this, but there is a theorem of J. A. Green that states that if
D is a defect group of some block of G contained in a Sylow p-subgroup P of G,
then there is x P G0 such that D “ P x X P .
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LECTURE 4

Brauer’s first main theorem

Our new goal is proving the existence of a canonical bijection

BlpG|Dq Ñ BlpNGpDq|Dq

for a given defect group D. This is known as Brauer’s first main theorem.

4.1. The Brauer map

Let P be a p-subgroup of G, and let CGpP q Ď H Ď NGpP q. The Brauer map is
defined by

BrP : ZpFGq Ñ ZpFHq

ClGpxq` ÞÑ
ÿ

yPClGpxqXCGpP q

y

where we set BrP pClGpxq`q “ 0 if ClGpxq X CGpP q “ H.

Theorem 4.1. The Brauer map is an algebra homomorphism.

Sketch of proof. The map BrP is clearly F -linear so we only need to show
that for x, y P G{ „ we have

BrP pClGpxq`qBrP pClGpyq`q “ BrP pClGpxq`ClGpyq`q.

For this, we write

ClGpxq`ClGpyq` “
ÿ

zPG{„

axyzClGpzq`

and it turns out that the coefficient

axyz “ |tpx0, y0q P ClGpxq ˆ ClGpyq | x0y0 “ zu|˚.

Write C “ CGpP q. Now on one hand if c P C then the coefficient of c in

BrP pClGpxq`ClGpyq`q “
ÿ

zPG{„

axyzBrP pClGpzq`q

is axyc (choosing the appropiate G{ „ such that c P G{ „ ). On the other hand,
the coefficient of c in BrP pClGpxq`qBrP pClGpyq`q is

bxyc “ |tpx0, y0q P pClGpxq X Cq ˆ pClGpyq X Cq | x0y0 “ cu|˚.

23



24 4.1. The Brauer map

The final trick is that P acts by conjugation on

tpx0, y0q P ClGpxq ˆ ClGpyq | x0y0 “ zu

with fixed points

tpx0, y0q P pClGpxq X Cq ˆ pClGpyq X Cq | x0y0 “ cu

and since P is a p-group, this implies that these two sets have sizes congruent
modulo p, so axyz “ bxyz. □

Remarkably, the previous proof heavily relies on our field having characteristic
p.

Lemma 4.2. Let P ď G be a p-subgroup. For x P G{ „ choose some Dx P

δpClGpxqq. Then

kerpBrP q “
ÿ

P ­ĎGDx

FClGpxq`p“ xClGpxq` | P ­ĎG DxyF q

(the RHS denotes the linear combinations of the class sums ClGpxq` with P ­ĎG

Dx).

Proof. We claim that BrP pClGpxq`q ‰ 0 if and only if P ĎG Dx

Indeed, BrP pClGpxq`q ‰ 0 if and only if ClGpxq X CGpP q ‰ H, which happens
if and only if some G-conjugate xt of x centralizes P . This happens if and only
if P Ď CGpxtq and then P Ď D0 P SylppCGpxtqq and this happens if and only if
P ĎG Dx.

Now if z P ZpFGq satisfies BrP pzq and we write

z “
ÿ

xPG{„

zxClGpxq`

then notice that zx “ 0 if BrP pClGpxq`q ‰ 0 because the sets ClGpxq X C are
disjoint. By the first paragraph, if BrP pzq “ 0 then zx “ 0 whenever P ĎG Dx.
Conversely, any linear combination

z “
ÿ

P ­ĎDx

zxClGpxq`

satisfies BrP pzq “
ř

P ­ĎDx
zxBrP pClGpxq`q “ 0. □

Theorem 4.3. Let B P BlpG|Dq and let P ď G be a p-subgroup. Then BrP peBq ‰

0 if and only if P ĎG D.

Proof. Write (as usual)

eB “
ÿ

xPG{„

aBpClGpxq`qClGpxq`.
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4. Brauer’s first main theorem 25

By Lemma 4.2, BrP peBq ‰ 0 if and only if there is some x P ClGpxq` with
P ĎG Dx P δpClGpxqq and with aBpClGpxq`q ‰ 0.

First suppose that P ĎG D. By choosing a defect class ClGpxq of B, we have
aBpClGpxq`q ‰ 0 and P ĎG D P δpClGpxqq. By the previous paragraph this
implies BrP peBq ‰ 0.

Conversely, if there is some class ClGpxq ‰ 0, P ĎG Dx P δpClGpxqq and with
aBpClGpxq`q ‰ 0 then by the Min–Max theorem we haveDx ĎG D and therefore
P ĎG Dx ĎG D and we are done. □

We have found another definition of the defect groups: the maximal p-subgroup
D of G up to G-conjugation with BrDpeBq ‰ 0.

4.2. Block induction

Let H ď G and b P BlpHq. We use the algebra homomorphism λb : ZpFHq Ñ F
to define an F -linear map

λGb : ZpFGq Ñ F

ClGpxq` ÞÑ λb

¨

˝

ÿ

yPClGpxqXH

y

˛

‚.

It may happen that λGb is in fact an algebra homomorphism. In that case, by

Theorem 2.11 we know that there is a unique bG P BlpGq such that λbG “ λGb .

We say in this case that the induced block bG is defined.

There is more than one definition of induced block in the literature, but they
coincide in the important cases.

Lemma 4.4. Let b P BlpHq with H ď G. If bG is defined then every defect group
of b is contained in a defect group of bG.

Proof. Let ClGpxq be a defect class for bG, which implies that λbGpClGpxq`q ‰

0. In particular

λGb

¨

˝

ÿ

yPClGpxqXH

y

˛

‚‰ 0.

Therefore there is some ClHpzq Ď ClGpxq X H with λbpClHpzqq ‰ 0. By the
Min–Max theorem we have Db ĎH Dz P δpClHpzqq where Db P δpbq. Now
Dz Ď CHpzq Ď CGpzq, so there is D P SylppCGpzqq with Dz Ď D. Now since
ClGpxq “ ClGpzq is a defect class of B, then δpBq contains D and we have
Db ĎG D, as desired. □

Next is the big theorem.

Università degli Studi di Firenze J. Miquel Mart́ınez



26 4.2. Block induction

Theorem 4.5. Let P ď G be a p-subgroup, and let H ď G be such that
PCGpP q Ď H Ď NGpP q. If b P BlpHq then bG is defined and λGb “ λb ˝ BrP .

Further, if B P BlpGq then B “ bG for some block b P BlpHq if and only if
P Ď D P δpBq.

Proof. Since BrP and λb are algebra homomorphisms, to prove that bG is
defined (that is, λGb is an algebra homomorphism) it suffices to show that λGb “

λb ˝ BrP .

Let C “ CGpP q. If x P G then we wish to prove

λb

¨

˝

ÿ

yPClGpxqXH

y

˛

‚“ λb

¨

˝

ÿ

yPClGpxqXC

y

˛

‚.

Since C Ÿ H then ClGpxq XC is a union of H-conjugacy classes, so we can split
the LHS as follows

λb

¨

˝

ÿ

yPClGpxqXC

y

˛

‚` λb

¨

˝

ÿ

yPpClGpxqXHqzpClGpxqXCq

y

˛

‚

and it suffices to show that the rightmost term vanishes. Now let z P pClGpxq X

HqzpClGpxqXCq. We have that ClHpzqXC “ H. Now PŸH so P Ď OppHq, and
therefore CHpOppHqq Ď CHpP q Ď C. This implies that CHpOppHqqXClHpzq “

H. By Lemma 3.8, ClHpzq` lies in the kernel of of λb, so λbpClHpzq`q “ 0. The
desired equality now follows since the rightmost term of the above sum vanishes,
and the first part is proved.

The second part is a double implication so we start with the easy one. If bG “ B
for some b P BlpHq, then we now from Lemma 4.4 that if Db P δpbq then
Db Ď D P δpBq. Now P Ÿ H so P Ď OppHq Ď Db and it follows that P Ď D,
as desired. Conversely, if P Ď D P δpBq then from Theorem 4.3 we have that
BrP peBq ‰ 0. Since BrP is an algebra homomorphism, BrpeBq P ZpFHq must
be an idempotent, and therefore it is a sum of (different) primitive idempotents,
so BrpeBq “ eb1 ` ¨ ¨ ¨ ` ebt for some blocks bi P BlpHq, by Theorem 2.11. From
the first part, if b is one of the bi’s, b

G is defined and λGb peBq “ λbpBrP peBqq “
ř

λbpebiq “ 1 so B “ bG by Theorem 2.11. □

From the above argument we get the following conclusion.

Corollary 4.6. Let G,P,H be as before. Then

BrP peBq “
ÿ

bG“B

eb.

The following is treated by some experts as folklore, but it is a (nontrivial)
application of the previous result.
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4. Brauer’s first main theorem 27

Problem 4.7. Let G be a finite group. If there is some p-subgroup P Ÿ G with
CGpP q Ď P then G has a unique block.

As a consequence, if G is p-solvable and Op1pGq “ 1 then G has a unique block
(since Hall–Higman’s Lemma 1.2.3 implies that CGpOppGqq Ď OppGq).

Problem 4.8. Let P Ÿ G be a p-subgroup and B P BlpG|P q. Then

eB “
ÿ

PPδpClGpxqq

aBpClGpxq`qClGpxq`.

4.3. The first main theorem

The following is a key result in group theory, for a proof see [Nav98, Theorem
4.16]. In a sense it is a version of the first main theorem but for conjugacy
classes. We denote by ClpG|Dq the set of conjugay classes of G with defect
group D.

Theorem 4.9. Let D ď G be a p-subgroup. The map ClGpxq ÞÑ ClGpxqXCGpDq

is a bijection ClpG|Dq Ñ ClpNGpDq|Dq.

Notice that if ClGpxq is a conjugacy class with defect group D, then

BrDpClGpxq`q “ pClGpxq X CGpDqq`.

We are finally ready to prove Brauer’s first main theorem. Recall that BlpG|Dq

denotes the (possibly empty) set of blocks of G with defect group D.

Theorem 4.10 (Brauer’s first main). The map

BlpNGpDq|Dq Ñ BlpG|Dq

b ÞÑ bG

is a bijection. Its inverse is given by applying BrD to the block idempotents.

Proof. Denote by N “ NGpDq and C “ CGpDq. By Theorem 4.5 we know
that if b P BlpN |Dq then bG is defined and λbG “ λGb “ λb ˝ BrD.

Claim 1: bG has defect group D (so the map is well defined).

Let ClN pyq be a defect class for b. Since b has defect group D then so does
ClN pyq and therefore ClGpyq has defect group D and ClN pyq “ ClGpyq X C by
Theorem 4.9. Now

λbGpClGpyq`q “ λbpBrDpClGpyq`qq “ λbppClGpyq X Cq`q “ λbpClN pyq`q ‰ 0

so by the Min–Max theorem we have that a defect group of bG is contained in
D. By Lemma 4.4, D is contained in some defect group of bG and this proves
the claim.
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28 4.3. The first main theorem

Claim 2: The map b ÞÑ bG is surjective.

Let B P BlpG|Dq. By Theorem 4.5 there is some b P BlpNq with bG “ B. We
need to prove that b has defect group D. Now since DŸ N then D is contained
in the defect groups of b. By Lemma 4.4, the defect groups of b are contained
in the defect groups of b. This shows that b has defect group D, as desired.

Claim 3: The map b ÞÑ bG is injective.

Let b, c P BlpN |Dq and assume bG “ cG. This implies that λbG “ λb ˝ BrD “

λc ˝ BrD “ λcG by Theorem 4.5. If ClGpxq has defect group D then

λbppClGpxq X Cq`q “ λcppClGpxq X Cq`q

so by Theorem 4.9, λb and λc coincide in every conjugacy class of N with defect
group D. Now using Problem 4.8

1 “ λbpebq “
ÿ

DPδpClN pyqq

abpClN pyq`qλbpClN pyq`q “

“
ÿ

DPδpClN pyqq

abpClN pyq`qλcpClN pyq`q “ λcpebq

which shows eb “ ec so b “ c. □

As a consequence of the first main theorem, defect groups are p-radical (we say
a p-subgroup P is p-radical if P “ OppNGpP qq).

Problem 4.11. Let D P δpBq for some block B. Prove that OppNGpDqq “ D.
(Hint: OppGq is contained in all the defect groups!).
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LECTURE 5

The principal block and Brauer’s third main theorem

The principal block is the unique block B0pGq that contains the trivial character
1G. Its defect groups are the Sylow p-subgroups. In some sense, it is the most
important block of a group in terms of the structural information it contains (if
time permits, we might devote a session at the end of the course to prove things
about principal blocks).

Assume H ď G and b P BlpHq is such that bG is defined and bG “ B0pGq.
Brauer’s third main theorem shows that this forces b “ B0pHq.

Brauer’s proof [Bra64] (which appeared in the first volume of the Journal of
Algebra) relies on results about block coverings and assumes that CGpP q Ď H
for some p-subgroup P ď G, so we follow the proof from [Nav98, Chapter 6],
which is a bit more convoluted but also gives interesting insights on induced
blocks. Since we are taking two weeks off after this session I believe this is the
more natural approach (instead of introducing stuff about normal subgroups and
coverings and then taking a break). I still think that it is worth reading Brauer’s
paper, which has aged beautifully.

5.1. Preliminary results

In this section, for any χ P CharpGq, we write

ωχ : ZpCGq Ñ C

ClGpxq` ÞÑ
|ClGpxq|χpxq

χp1q
.

Notice that ωχpClGpxq`q may not be in R if χ is not irreducible. Observe that

χp1qωχpClGpxq`q “ |ClGpxq|χpxq “
ÿ

ψPIrrpGq

|ClGpxq|rχ, ψsψpxq “

“
ÿ

ψPIrrpGq

rχ, ψsψp1qωψpClGpxq`q

so χp1qωχ “
ř

ψPIrrpGqrχ, ψsψp1qωψ. We shall use this fact throughout this sec-

tion withour further mention.
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30 5.1. Preliminary results

If H ď G and any field K and any K-linear map λ : ZpKHq Ñ K we denote by
λG : ZpKGq Ñ K the K-linear map defined by

λGpClGpxq`q “ λppClGpxq XHq`q.

Notice that if b P BlpHq then the induced map λGb is just pλbq
G.

Lemma 5.1. Let H ď G and ξ P IrrpHq. Then ωGξ “ ωξG.

Proof. We have
ξGp1qωξG “

ÿ

ψPIrrpGq

rξG, ψsψp1qωψ

so we need to show that the RHS equals ξGp1qpωξq
G.

Let x P G and notice that if ClGpxq XH is nonempty then we may write

ClGpxq XH “

t
ď

i“1

ClHpxiq

as a disjoint union. With this expression, we may rewrite the induction formula

ξGpxq “ |CGpxq|

t
ÿ

i“1

ξpxiq

|CHpxiq|

(I recommend trying to prove this as a problem, but it can be seen in [Isa06, p.
64]). Thus

ÿ

ψPIrrpGq

rξG, ψsψp1qωψpClGpxq`q “
ÿ

ψPIrrpGq

rξG, ψsψp1q
|ClGpxq|ψpxq

ψp1q
“

“ |ClGpxq|ξGpxq “
|G|

|CGpxq|
|CGpxq|

t
ÿ

i“1

ξpxiq

|CHpxiq|
“ |G|

t
ÿ

i“1

ξpxiq

|CHpxiq|
“

“ |G|

t
ÿ

i“1

|ClHpxiq|ξpxiq

|H|
“

|G|

|H|

t
ÿ

i“1

|ClHpxiq|ξpxiq “ ξGp1q

t
ÿ

i“1

ωξpClHpxiq
`q “

“ ξGp1qωξppClGpxq XHq`q “ ξGp1qpωξq
GpClGpxq`q

where we have used that ξGp1q “ |G : H|ξp1q. □

Corollary 5.2. If H ď G and ξ P IrrpHq then ωξGpClGpxq`q P R. Therefore,
if z P ZpSGq, ωξGpzq P S.

Proof. By the previous result (and inheriting the notation in the proof)

ωξGpClGpxq`q “ ωξppClGpxq XHq`q “

t
ÿ

i“1

ωξpClHpxiq
`q

which is an algebraic integer. The second part follows by linearity. □

Università degli Studi di Firenze J. Miquel Mart́ınez



5. The principal block and Brauer’s third main theorem 31

Corollary 5.3. Let H ď G and ξ P IrrpHq. If ξG P IrrpGq then blpξqG is
defined and contains ξG.

Proof. Since ξG is irreducible

ωξG : ZpCGq Ñ C

is an algebra homomorphism. Further

λGb pClGpxq`q “ λbppClGpxq XHq`q “ ωξppClGpxq XHq`q˚ “ ωGξ pClGpxq`q˚ “

“ ωξGpClGpxq`q˚ “ λξGpClGpxq`q

which implies λGb is an algebra homomorphism ZpFGq Ñ F . It follows that bG

is defined and since λGb “ λbG “ λξG , then b
G contains ξG. □

If B P BlpGq and χ P CharpGq then we denote by

χB “
ÿ

ψPIrrpBq

rχ, ψsψ

so that χ “
ř

BPBlpGq χB. Recall that P “ kerp˚: S Ñ F q.

Lemma 5.4. Let H ď G and consider b P BlpHq, ξ P Irrpbq. Let B P BlpGq.

(i) We have

|ClGpxq|pξGqBpxq

ξGp1q
P S.

(ii) If bG is defined then

(a) if bG “ B and χ P IrrpBq then

|ClGpxq|pξGqBpxq

ξGp1q
”

|ClGpxq|χpxq

χp1q
mod P

(b) if bG ‰ B then

|ClGpxq|pξGqBpxq

ξGp1q
P P.

Proof. Recall that we wrote fB “
ř

χPIrrpBq eχ. The key to this proof is that

|ClGpxq|pξGqBpxq

ξGp1q
“ ωGξ pfBClGpxq`q.
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32 5.1. Preliminary results

Indeed, using that ωχ is an algebra homomorphism if χ is irreducible, and that
ωχpfBq “ δblpχq,B we obtain

ξGp1qωξGpfBClGpxq`q “
ÿ

χPIrrpGq

rξG, χsχp1qωχpfBClGpxq`q “

“
ÿ

χPIrrpBq

rξG, χsχp1qωχpClGpxq`q “
ÿ

χPIrrpBq

rξG, χs|ClGpxq|χpxq “

“ |ClGpxq|pξGqBpxq

and the claim follows. Now fB has coefficients in S, and therefore so does
fBClGpxq`. By Corollary 5.2, ωξGpfBClGpxq`q P S, and (i) is proved.

Assume bG is defined. We have

λGb pClGpxq`q “ λbppClGpxq XHq`q “ λξppClGpxq XHq`q “

“ ωξppClGpxq XHq`q˚ “ ωξGpClGpxq`q˚

so if z P ZpSGq then λGb pz˚q “ ωξGpzq˚. By the proof of the first part we have

λbGpeBClGpxq`q “ λbGppfBClGpxq`q˚q “ ωξGpfBClGpxq`q “

ˆ

|ClGpxq|pξGqBpxq

ξGp1q

˙˚

.

If bG “ B then λbGpeBq “ 1, so if we take χ P IrrpBq we have
ˆ

|ClGpxq|χpxq

χp1q

˙˚

“ λbpClGpxq`q “ λbpeBClGpxq`q “

ˆ

|ClGpxq|pξGqBpxq

ξGp1q

˙˚

.

and (ii)(a) follows.

If bG ‰ B then λbGpeBq “ 0 and therefore

0 “ λGb peBqλGb pClGpxq`q “

ˆ

|ClGpxq|pξGqBpxq

ξGp1q

˙˚

and (ii)(b) follows. □

We obtain an interesting and very useful consequence.

Problem 5.5. Assume H ď G, b P BlpHq and suppose bG is defined. Let
ξ P Irrpbq and B P BlpGq. Prove that

(i) νppξGqBp1qq ą νpξGp1qq if B ‰ bG,

(ii) νppξGqBp1qq “ νpξGp1qq if B “ bG.

Deduce that there is some χ P IrrpbGq such that rχ, ξGs ‰ 0.

(Hint: Apply the previous result to x “ 1 and use the result on valuations.)
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5. The principal block and Brauer’s third main theorem 33

5.2. A generalized character

If χ P CharpGq we define pχpxq “ |G|pχpxq if g P G0 and pχpxq “ 0 otherwise. We
will not prove anything here, but state the main result that we need.

Proposition 5.6. Let χ P IrrpBq for B P BlpGq. Then

(i) pχ is a Z-linear combination of IrrpBq,

(ii) χ has height zero if and only if νprpχ, ξsq “ νpξp1qq for all ξ P IrrpBq

(equivalently, rpχ,ξs

ξp1q
P SzP).

Proof. See [Nav98, Lemma 3.20 and Theorem 3.24]. □

We can use this generalized character to test whether a (height zero) character
belongs to an induced block.

Proposition 5.7. Let H ď G and assume bG is defined for some b P BlpHq.
Let χ P IrrpGq and ψ P Irrpbq.

(i) If χ R IrrpbGq then
r xχH , ψs

ψp1q
P P,

(ii) if χ P IrrpbGq has height zero then

r xχH , ψs

ψp1q
ı 0 mod P.

Proof. First notice that if x P H0 then

xχHpxq “ pχpxq “ |G|pχpxq

and

pχHpxq “ |H|pχpxq

and if both pχH and xχH vanish in HzH0. This shows that

xχH “
1

|G : H|p
pχH .

Secondly, recall that by Proposition 5.6, pχ is a Z-linear combination of IrrpBq

and, in particular, for any η P CharpGq we have

rpχ, ηs “ rpχ, ηBs.

We have

r xχH , ψs

ψp1q
“

rpχH , ψs

|G : H|pψp1q
“

rpχ, ψGs

|G : H|pψp1q
“

rpχ, pψGqBs

|G : H|pψp1q
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34 5.3. The proof

and using that ψGp1q “ |G : H|ψp1q we can write

rpχ, pψGqBs

|G : H|pψp1q
“

|G : H|rpχ, pψGqBs

|G : H|pψGp1q
“

|G : H|p1rpχ, pψGqBs

ψGp1q
“

“
|G : H|p1

ψGp1q|G|

ÿ

xPG{„

|ClGpxq|pψGqBpxqpχpx´1q.

Now, pχ vanishes in GzG0 and pχpgq “ |G|pχpgq otherwise. We can rewrite the
last expression as

|G : H|p1 |G|p

ψGp1q|G|

ÿ

xPG0{„

|ClGpxq|pψGqBpxqχpx´1q “

“
1

|H|p1

ÿ

xPG0{„

|ClGpxq|pψGqBpxq

ψGp1q
χpx´1q.

Now, if B ‰ bG then

|ClGpxq|pψGqBpxq

ψGp1q
” 0 mod P

by Lemma 5.4 and we conclude that ryχH ,ψs

ψp1q
” 0 mod P.

Otherwise, by the same result,

|ClGpxq|pψGqBpxq

ψGp1q
”

|ClGpxq|χpxq

χp1q
mod P.

Now, since pχ vanishes outside G0,

r xχH , ψs

ψp1q
”

1

|H|p1

ÿ

xPG0{„

|ClGpxq|χpxq

χp1q
χpx´1q “

“
1

|H|p1χp1q|G|p

ÿ

xPG{„

|ClGpxq|pχpxqχpx´1q “

“
|G|

|H|p1χp1q|G|p
rpχ, χs “

|G|p1

|H|p1

rpχ, χs

χp1q
ı 0 mod P

by Proposition 5.6. □

5.3. The proof

We prove a more general result, due to Okuyama.

Theorem 5.8 (Okuyama). Let H ď G, χ P IrrpGq and assume χH P IrrpHq.
Assume further that hχ “ 0 “ hχH in their respective blocks. If c P BlpHq is
such that cG is defined, then c “ blpχHq if and only if eG “ blpχq.
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5. The principal block and Brauer’s third main theorem 35

Proof. If c “ blpχHq then blpχHqG is defined, and we need to show blpχHqG “

blpχq. Now χH has height zero, so by Proposition 5.6,

r xχH , χHs

χHp1q
‰ 0 mod P

and since χ has height zero, Proposition 5.7 implies χ P blpχHqG, as desired.

If cG “ blpχq then we need e “ blpχHq. Let ψ P Irrpcq. Since χ P cG has height
zero, we have

r xχH , ψs ‰ 0.

Now, by Proposition 5.6, xχH only involves characters in blpχHq, and we conclude
that ξ P blpχHq so c “ blpχHq. □

Corollary 5.9 (Brauer’s third main). Let H ď G and b P BlpHq. If bG is
defined and bG “ B0pGq then b “ B0pHq.

Proof. Apply Okuyama’s theorem to χ “ 1G. □
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LECTURE 6

Clifford theory for Brauer characters

A lot of the Clifford theory of Brauer characters mimicks the Clifford theory of
ordinary characters. The main challenges in the proofs arise from the fact that
Frobenius’ reciprocity is no longer true and the absence of a scalar product. We
will not prove many results that essentially just mimick the techniques of the
complex situation with the appropiate adjustments. Every unproven theorem
(and the proven ones as well) can be found in [Nav98, Chapter 8].

6.1. Induction of Brauer characters and Clifford’s theorem

Let α P cfpH0q where H Ď G. We define αG P cfpG0q by the formula

αGpxq “
1

|H|

ÿ

gPG

α̃pgxg´1q

where α̃pyq “ αpyq if y P H0 and α̃pyq “ 0 otherwise. Note that if β P cfpHq

then pβGq0 “ pβ0qG.

Theorem 6.1 (Brauer–Nesbitt). If α is a Brauer character of H ď G then αG

is a Brauer character of G.

In the above situation, we denote by IBrpG|αq the set of characters χ P IBrpGq

such that χH contains α. Warning! This does not imply (I think) that αG

contains χ (we will see below that it does if H Ÿ G).

One of the main obstacles of proving the above theorem (and many others in
this chapter) is the fact that there is no scalar product to help us decompose
Brauer characters as a linear combination of irreducible Brauer characters. In
fact, for complex characters, the previous proof is just a direct consequence of
the Frobenius reciprocity, which we lack in this context. The closest analogue
to the scalar product that helps us in this situation is the following. If χ “
ř

µPIBrpGq aµµ and φ “
ř

µPIBrpGq bµµ then we define

Ipχ, φq “
ÿ

µPIBrpGq

aµbµ

and in particular Ipχ, χq “ 1 if and only if χ P IBrpGq.
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If N Ÿ G, θ P IBrpNq and g P G then we define by θg the character defined by

θgpnq “ θpgng´1q

for n P N0. This defines an action of G on IBrpNq by conjugation.

It turns out that the analogue Frobenius reciprocity is true if we assume the
subgroup is normal! In fact, Clifford’s theorem also holds for Brauer characters.

Theorem 6.2 (Clifford). Let N Ÿ G, let φ P IBrpGq and θ P IBrpNq. Then

(i) φ is a constituent of θG with multiplicity e if and only if θ is a constituent
of φN

(ii) in this case

φN “ e
t

ÿ

i“1

θi

where tθ1, . . . , θtu is the set of G-conjugates of θ and e “ IpχN , φq “

Ipχ, φGq.

A key result is that if V is a simple FG-module and W is a FN -submodule of
VN then VN “

ř

gPGWg. Most of the proof then follows the proof for complex
characters with the appropiate substitutions of the scalar product by our newly
defined I.

If N Ÿ G and θ P IBrpGq we denote by Gθ the stabilizer of θ in G (also called
the inertia subgroup of θ).

Theorem 6.3 (Clifford correspondence). Let N Ÿ G and θ P IBrpGq. Then the
map

IBrpGθ|θq Ñ IBrpG|θq

ψ ÞÑ ψG

is a bijection. Moreover if ψ P IBrpGθ|θq we have

IppψGqN , θq “ IpψN , θq and IppψGqGθ , ψq “ 1.

If we compare this to the case of complex characters then the last two conditions
might become more natural (recall that in the complex case pψGqT “ ψ`∆where
∆ is a sum (or zero) of characters not lying over θ).

The following is perhaps surprising (it is to me).

Proposition 6.4. Let N Ÿ G and θ P IBrpNq. If τ P IBrpGθ|θq then pΦτ qG “

ΦτG.
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6. Clifford theory for Brauer characters 39

6.2. Extendibility of Brauer characters

An extension of a character α P IBrpHq is a character χ P IBrpGq with χH “ α.
When H Ÿ G there are some situations in which we can guarantee extendibility
(and then we have great control of the characters in IBrpG|αq.

Theorem 6.5 (Green). Let N Ÿ G and assume G{N is a p-group. Let θ P

IBrpNq. Then there is a unique φ P IBrpG|θq and φN “
řt
i“1 θi with usual

notation. In particular, if θ is G-invariant then φN “ θ.

Proof. We argue by induction on |G : N |.

First we claim that we may assume θ is G-invariant. Indeed, if Gθ ă G then
by induction we have IBrpGθ|θq contains a unique character, say ψ. By the
Clifford correspondence we have that ψG is the unique character in IBrpG|θq.
Furthermore, by induction ψN “ θ so IpψN , θq “ 1 by Clifford’s theorem and
again by the Clifford correspondence, IppψGqN , θq “ 1. The result follows now
by applying Clifford’s theorem again.

Therefore we assume Gθ “ G, so if φ P IBrpG|θq we have φN “ eθ. Notice that
N0 “ G0. By the induction formula,

pθGqN “ |G : N |θ

so for any n P N0 “ G0 we have

eθGpnq “ e|G : N |θpnq “ |G : N |φpnq

which shows that eθG “ |G : N |φ so θG is a multiple of φ by the linear in-
dependence of IBrpGq (and the uniqueness is proved). We need to show that
e “ 1.

If e ą 1 then since θG “
|G:N |

e φ it follows that e is a p-power. In particular, for

all g P G0 “ N0 we have

φpgq˚ “ e˚θpgq˚ “ 0.

Now if x P G and X affords φ then recall that by Lemma 1.4 we have

tracepX pxqq “ φpxp1q˚

so tracepX pxqq “ 0 for all x P G. This contradicts the fact that trace functions of
irreducible representations are linearly independent, so we conclude e “ 1. □

There is another classic situation in which extendibility can be guaranteed, but
its only known proof uses representations and is a bit annoying.

Theorem 6.6. Let N Ÿ G and assume G{N is cyclic. If θ P IBrpNq is G-
invariant then θ extends to G.
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In these (and the many other) situations where we have a character θ from a
normal subgroup N that extends to G, there is a perfect understanding of the
set IBrpG|θq.

Theorem 6.7 (Gallagher correspondence). Let N Ÿ G and assume θ extends to

θ̃ P IBrpGq. Then the map

IBrpG{Nq Ñ IBrpG|θq

β ÞÑ βθ̃

is a bijection.

Another warning! As with ordinary characters, unless a canonical extension
can be found, there is no canonical description of IBrpG|θq, i.e., our description
will depend on the extension chosen. For most applications this is not very
important. Notice also that if G{N is a p-group, then Green’s theorem and the
Gallagher correspondence coincide since 1G{N is the only Brauer character of
G{N .

Recall that in general if φ is an irreducible Brauer character of G, it is not even
true that φp1q divides |G| (not even φp1qp divides |G|). An example can be
found in the sporadic McLaughlin group McL which has a 2-Brauer character φ
with φp1q2 “ 29 but |McL|2 “ 27. This cannot happen whenever G is solvable.
In fact, more is true:

Corollary 6.8 (Swan). Let N Ÿ G and θ P IBrpNq. If G{N is solvable then
φp1q{θp1q divides |G : N | for all φ P IBrpG|θq.

Proof. Argue by induction on |G : N |.

First we claim that we may assume θ is G-invariant. Again, if χ P IBrpG|θq

and Gθ ă G then by induction the Clifford correspondent ψ of χ over θ satisfies
ψp1q{θp1q | |Gθ : N |. Since ψG “ χ then

χp1q{θp1q “ |G : Gθ|ψp1q{θp1q

divides |G : N | “ |G : Gθ||Gθ : N |.

Now if N Ÿ M Ÿ G and again let χ P IBrpG|θq and let ψ P IBrpG|θq be any
constituent of χM . By induction, ψp1q{θp1q | |M : N | and χ P IBrpG|ψq satisfies
χp1q{ψp1q | |G : M |. We conclude that χp1q{θp1q divides |G : N |. Therefore we
may assume G{N has no proper normal subgroups.

Since G{N is solvable and simple, it is cyclic. By Theorem 6.6 θ extends to G
and by the Gallagher correspondence, every χ P IBrpG|θq is an extension of θ.
Therefore χp1q{θp1q “ 1 and we are done. □

The above result is just true for complex characters without any solvability
condition.
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6.3. On modular character triples

Character triples are one of the fundamental tools to work with Clifford theory.
The precise definition is a bit too technical to state here but we will try to give
some intuition and explain some of the results that one can obtained by applying
this theory.

A modular character triple is a triple pG,N, θq where θ is a G-invariant Brauer
character of N Ÿ G. It can happen that two finite groups have different Brauer
character theories, but that over a particular character of a normal subgroup the
same things happen. Of course, for this to be possible, the factor groups have
to be isomorphic.

We say that two modular character triples pG,N, θq, pH,M, λq are isomorphic if
there is a group isomorphism σ : G{N Ñ H{M and for any subgroupN ď L ď G
there is a map

τL : NrIBrpL|θqs Ñ NrIBrpσpLq|λqs

that maps irreducible characters to irreducible characters bijectively and satsifies
many more compatibility properties (with conjugation, restriction, induction,
multiplication... etc). A particular condition is that if χ P IBrpL|θq then

χp1q

θp1q
“
τLpχqp1q

λp1q
.

Also, θ extends to a subgroup N ď L ď G if and only if λ extends to the
corresponding subgroup σpLq.

Theorem 6.9. Any modular character triple pG,N, θq is isomorphic to a modu-
lar character triple pH,M, λq where M ď ZpHq and λ is linear and faithful. In
particular M has order not divisible by p.

Notice that the corresponding λ is also an irreducible complex character of M .
Essentially, every G-invariant θ P IBrpNq corresponds to some element α P

H2pG{N,Fˆq (the second cohomology group), and we use this α to construct
a central extension of G that ends up yielding the above isomorphism. The
construction is quite technical but allows for very nice control of blocks, thanks
to results of Murai.

We do not need any of this though. Here are some results that can be obtained
as consequences of this isomorphism. In the following results we use that their
complex-character version is true.

Proposition 6.10. Let NŸG, θ P IBrpNq and assume G{N is p-solvable. Then
for any χ P IBrpG|θq we have χp1q{θp1q divides |G : N |.

Proof. We argue by induction on |G : N |. As in the solvable version, we may
assume θ is G-invariant. By Theorem 6.9, pG,N, θq is isomorphic to pH,M, λq
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where λ is a linear character andM is a p1-group. Notice that it suffices to prove
the result for pH,M, λq.

LetMŸ UŸH be a minimal normal subgroup. SinceH{M – G{N is p-solvable,
U{M is either a p-group or a p1-group. If U{M is a p-group then we are done by
Theorem 6.5. If U{M is a p1-group then U is a p1-group and IBrpUq “ IrrpUq.
The result now follows by using the complex character version. □

Using similar ideas it is possible to also prove the following.

Proposition 6.11. Let pG,N, θq be a modular character triple. Then θ extends
to G if and only if it extends to Q, where Q{N P SylqpG{Nq, for every prime q
dividing |G : N |.

It is fundamental to argue by induction on |G : N | instead of |G| when working
with character triple isomorphisms. There is no control over the order of the
group obtained in Theorem 6.9, but we do know that the index of the corre-
sponding normal subgroup is |G : N |.

Character triples (both ordinary and modular) have become a fundamental tool
in the study and reduction of the main conjectures that we face.
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LECTURE 7

Blocks and normal subgroups

For this chapter, if B P BlpGq then we write B “ IrrpBq Y IBrpBq.

7.1. Block covering

7.1.1. Actions by automorphisms. The group AutpGq acts on cfpGq and
cfpG0q by

ψσpgq “ ψpgσ
´1

q.

This action restricts to the subsets of ordinary (and Brauer) characters, and
also restricts to IrrpGq and IBrpGq. Further, pψσq0 “ pψ0qσ for all ψ P cfpGq

and it follows that dχψ “ dχσψσ . By using the linking graph it follows that
Bσ “ tψσ | ψ P Bu is also a block of G, so AutpGq also acts on BlpGq.

IfA is a ring (say F,C or S) then every σ P AutpGq also induces an automorphism
of the A-algebra AG, by

˜

ÿ

gPG

agg

¸σ

“
ÿ

gPG

agg
σ

which maps ZpAGq to ZpAGq. This action also satisfies eσχ “ eχσ , and therefore
fσB “ fBσ and eσB “ eBσ .

Now let B P BlpGq and σ P AutpGq. Then λB ˝σ´1 is an algebra homomorphism
ZpFGq Ñ F and

pλB ˝ σ´1qpeBσq “ λBppeσBqσ
´1

q “ λBpeBq “ 1

so λBσ “ λB ˝ σ´1.

Problem 7.1. Let B P BlpGq, D P δpBq and σ P AutpGq. Prove that Dσ is a
defect group Bσ

7.1.2. Blocks of normal subgroups. Applying the previous discussion
to the action of G by conjugation on N Ÿ G we obtain a G-action on BlpNq.
Notice that if b P BlpNq and g P G then

Irrpbgq “ tψg | ψ P Irrpbqu and IBrpbGq “ tφg | φ P Irrpbqu.

We denote by Gb the stabilizer of b in G (notice that Gb contains Gψ for all
ψ P B).
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44 7.1. Block covering

Proposition 7.2. Let tb1, . . . , btu Ď BlpNq be a G-orbit. Then the idempotent
řt
i“1 fbi lies in ZpSGq.

Proof. We have that
ř

fbi P SN Ď SG. Now let g P G. Then

g´1p
ÿ

fbiqg “
ÿ

fbgi “
ÿ

fbi

so
ř

fbi P ZpSGq. □

Since
řt
i“1 fbi is an idempotent in ZpSGq Ď ZpCGq there is some subset A :“

tχ1, . . . , χnu Ď IrrpGq with

fA “

n
ÿ

j“1

eχj “

t
ÿ

i“1

fbi P ZpSGq.

By Theorem 2.6 we have that A must be a union of blocks, so there are
tB1, . . . , Bsu Ď BlpGq such that

s
ÿ

j“1

fBj “

t
ÿ

i“1

fbi .

Definition 7.3. In the situation above, we say that Bj covers (any) bi.

Write BlpG|bq for the set of blocks of G that cover b. If the bi’s above are the
G-conjugates of b then

BlpG|bq “ tB1, . . . , Bsu.

Problem 7.4. Let tb1, . . . , btu be the G-orbit of b P BlpNq. Prove that

ÿ

BPBlpG|bq

eB “

t
ÿ

i“1

ebi .

We aim to characterize block coverings in terms of the characters in the block.

Problem 7.5. Let N Ÿ G and let K be either F or C. Then tClGpxq` | x P Nu

is a basis of ZpKNq X ZpKGq.

Proposition 7.6. Let N Ÿ G, let χ P IrrpGq and θ P IrrpNq. Then χ P IrrpG|θq

if and only if ωχpClGpxq`q “ ωθpClGpxq`q for every x P N .

Proof. We observe first that ωθpClGpxq`q “ ωψpClGpxq`q for all x P N if and
only if ψ and θ are G-conjugate. Indeed pClGpxq`qg “ ClGpxq` so

ωθgpClGpxq`q “ ωθgppClGpxq`qgq “ ωθpClGpxq`q
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7. Blocks and normal subgroups 45

which proves the if direction. Conversely, assume that ωθ and ωψ agree in
ZpCGq XZpCNq (by Problem 7.5). If tθ1, . . . , θtu are the G-conjugates of θ then
arguing as in Proposition 7.2

t
ÿ

i“1

eθi P ZpCGq X ZpCNq

so using that ωχpeηq “ δχ,η we have that

0 ‰ ωθ

´

ÿ

eθi

¯

“ ωψ

´

ÿ

eθi

¯

and again since ωχpeηq “ δχ,η we have ψ is one of the θi’s, as desired.

Now let ξ P IrrpNq be under χ and let tξ1, . . . , ξtu be the set of G-conjugates of
ξ. By Clifford’s theorem we have

χN “ e
t

ÿ

i“1

ξi.

If x P N then write ClGpxq “
š

ClN pxjq as a disjoint union. Then

etξp1qωξpClGpxq`q “ eξp1q
ÿ

i

ωξipClGpxq`q “ eξp1q
ÿ

i

ÿ

j

ωξipClN pxiqq “

“ e
ÿ

i

ÿ

j

|ClN pxjq|ξipxjq “
ÿ

j

|ClN pxjq|

˜

ÿ

i

eξipxjq

¸

“

“
ÿ

j

|ClN pxjq|χpxjq “ |ClGpxq|χpxq “ χp1qωχpClGpxq`q

and we are done because etξp1q “ χp1q. □

Recall that we denote B “ IrrpBq Y IBrpBq.

Theorem 7.7. Let b P BlpNq and B P BlpGq. The following conditions are
equivalent.

(i) B covers b,

(ii) for all χ P B, every irreducible constituent of χN lies in a G-conjugate
of b,

(iii) there is χ P B such that χN has a constituent in b.

Proof. We first prove the theorem for ordinary characters. It is clear that (ii)
implies (iii).

Write tb1, . . . , btu for the G-conjugates of b and let tB1, . . . , Bsu “ BlpG|bq, so
that

t
ÿ

i“1

fbi “

s
ÿ

j“1

fBj P ZpCGq X ZpCNq.
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Assume that B P BlpG|bq and let χ P IrrpBq. Let θ P IrrpNq be under χ. By
Proposition 7.6,

1 “ ωχ

˜

s
ÿ

j“1

fBj

¸

“ ωθ

˜

t
ÿ

i“1

fbi

¸

which implies that θ lies in one of the bi’s. This shows that (i) imples (ii).

Now if (iii) for χ P IrrpBq, let θ be under χ and in Irrpbq. Then again by
Proposition 7.6 we have

1 “ ωθ

˜

t
ÿ

i“1

fbi

¸

“ ωχ

˜

s
ÿ

j“1

fBj

¸

which shows that ωχ has to lie in one of the Bj ’s, and we are done.

To prove the result for Brauer characters, notice that if χ P IrrpBq then pχ0qN “

pχN q0. Then for φ P IBrpBq and θ P IBrpNq under χ, we take χ with dχφ ‰ 0
and there is some constituent η of χN such that dηθ ‰ 0, so we use the version
of the proof for ordinary characters. □

We obtain the following corollary (an analogue of Clifford’s theorem).

Corollary 7.8. If b1, b2 P BlpNq are covered by B P BlpGq then b1 and b2 are
G-conjugate.

Now we go the other way.

Proposition 7.9. Let b P BlpNq be covered by B. For all θ P b there is χ P B
lying over θ.

Proof. Assume first that θ is an ordinary character. Let χ P IrrpBq and η P

Irrpbq be under χ (by Theorem 7.7 this character exists). Now θ and η lie in the
same block so they are connected in the linking graph (while perhaps not being
linked).

Assume first that η and θ are linked. Let φ P IBrpbq be such that dηφ ‰ 0 ‰ dθφ.
Then pχN q0 contains φ. Therefore there is some constituent ψ P IBrpBq of χ0

lying over φ. Now θ0 also contains φ so we may write

pθGq0 “ pθ0qG “ φG ` ∆

where ∆ is a Brauer character or zero. Now recall that since N Ÿ G, Clifford’s
theorem implies that ψ is an irreducible constituent of φG, so there is an ir-
reducible constituent ξ P IrrpGq of θG such that ξ0 contains ψ. We have that
ξ P IrrpBq because ψ P IBrpBq, and ξ lies over θ, and we have shown that there
is a character in B lying over θ.
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Now if η and θ are not linked, then there are

η “ τ1, . . . , τn “ θ

characters of Irrpbq such that τi is linked to τi`1, and we can argue by induction
and apply the previous argument to conclude the theorem.

Finally, if θ P IBrpbq then let γ P Irrpbq with dγθ ‰ 0 and let χ P IrrpBq lie over
γ. Then some constituent of χ0 lies over θ and we are done. □

Corollary 7.10. Suppose that G{N is a p-group. If b P BlpNq then there is a
unique B P BlpG|bq.

Proof. Use Proposition 7.9 and Green’s theorem. □

Proposition 7.11. Let B P BlpGq and b P BlpNq. Then B covers b if and only
if λBpClGpxq`q “ λbpClGpxq`q for all x P N .

Proof. By Problem 7.4 we may write

ÿ

BPBlpG|bq

eB “

t
ÿ

i“1

ebi

where tb1, . . . , btu is the G-orbit of b.

Assume first that B covers b and let θ P Irrpbq and χ P IrrpBq lying over θ. Then
λB “ λχ and λb “ λθ. For all x P N , using Proposition 7.6 we have that

ωχpClGpxq`q “ ωθpClGpxq`q

so

λBpClGpxq`q “ ωχpClGpxq`q˚ “ ωθpClGpxq`q˚ “ λbpClGpxq`q.

Conversely suppose that λBpClGpxq`q “ λbpClGpxq`q for all x P N . Since
ř

BPBlpG|bq eB “
řt
i“1 ebi P ZpFGq X ZpFNq, by Problem 7.5 we have that

λB

¨

˝

ÿ

BPBlpG|bq

eB

˛

‚“ λb

˜

t
ÿ

i“1

ebi

¸

“ 1

because b is one of the bi’s. It follows that B is one of the blocks in BlpG|bq. □

7.2. The Fong–Reynolds correspondence

The Fong–Reynolds correspondence is the analogue of the Clifford correspon-
dence for blocks.

Theorem 7.12. Let b P BlpNq.
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48 7.2. The Fong–Reynolds correspondence

(i) The map

BlpGb|bq Ñ BlpG|bq

B ÞÑ BG

is a bijection.

(ii) If B P BlpGb|bq then

IrrpBGq “ tψG | ψ P IrrpBqu and IBrpBGq “ tφG | φ P IBrpBqu.

(iii) Every defect group of B is a defect group of BG.

(iv) If χ P IrrpBq then hχ “ hχG.

Sketch of proof Recall that for any θ P b we have Gθ Ď Gb. Let B P BlpGb|bq
and ψ P IrrpBq (the argument for Brauer characters is the same). Then there
is an irreducible constituent θ of ψN in b. By the Clifford correspondence (for
ordinary characters), ψ “ ηGb for some η P IrrpGθ|θq. Thus ψG “ ηG P IrrpG|θq

again by the Clifford correspondence. By Corollary 5.3, BG is defined and
contains ψG, and BG also covers b (because ψG lies over θ). We have shown that
every ψ P IrrpBq induces irreducibly to a character in BG.

Now if φ P IBrpBq we can argue as before to show φG P IBrpGq. We want to
show that φG is also in BG. Let θ P IBrpNq lie under φ and let η P IBrpGθq be
its Clifford correspondent, so that ηG “ φG. Now by Proposition 6.4 we have
Φφ “ pΦηqGb . Then

ΦGφ “ ppΦηqGbqG “ pΦηqG “ ΦηG “ ΦφG .

Now

ΦφG “ ΦGφ “
ÿ

µPIrrpBq

dµφµ
G

and every µG P IrrpBGq, so dµGφG ‰ 0 for some µG P IrrpBGq, so φG P IBrpBGq.

With these ideas one can end up showing that this thing is indeed a bijection
(notice that we have not proven injectivity nor surjectivity) and conclude (i)
and (ii) (the decomposition numbers by arguing as before with the projective
indecomposable character).

For the defect groups, notice that by Lemma 4.4 a defect group D of B is
contained in a defect group Q of BG. Now

|G : Q|p “ mintψGp1qp | ψ P IrrpBqu “ |G : Gb|pmintψp1qp | ψ P IrrpBqu “

“ |G : Gb|p|Gb : D|p “ |G : D|p

and we conclude that D “ Q.
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Finally the heights. Let B P BlpGb|bq and ψ P IrrpBq and let D be a defect
group of B. Then by the definition of height

νpψp1qq “ νp|Gb|q ´ νp|D|q ` hψ

so

νp|G|q ´ νp|D|q ` hψG “ νpψGp1qq “ νp|G : Gb|q ` νpψp1qq “

“ νp|G : Gb|q ` νp|Gb|q ´ νp|D|q ` hψ “ νp|G|q ´ νp|D|q ` hψ

as desired. □

A big warning: even if we have a defect group of BG contained in Gb, it is not
necessarily a defect group of B!
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Blocks and normal subgroups II

8.1. Block domination

Recall that ifNŸG, we identify IrrpG{Nq and IBrpG{Nq as subsets of characters
in IrrpGq and IBrpGq containing N in their kernel via χpxq ÞÑ χpxNq. Notice
that if x P G0 then

ÿ

φPIBrpGq

dχφφpxq “ χpxq “ χpxNq “
ÿ

ηPIBrpG{Nq

dχηηpxNq “
ÿ

ηPIBrpG{Nq

dχηηpxq

and since IBrpGq is a linearly independent set, we conclude that dχη “ dχη.
There are two consequences.

Corollary 8.1. If χ P IrrpGq contains N in its kernel, then so does every
φ P IBrpGq with dχφ ‰ 0.

Corollary 8.2. If B P BlpG{Nq then there exists a unique block B P BlpGq

with B Ď B.

Definition 8.3. We say B P BlpGq dominates B P BlpG{Nq if B Ď B.

Write G “ G{N . Then for any ring A we have a natural algebra homomorphism

: AG Ñ AG
ÿ

agg ÞÑ
ÿ

aggN

Notice that eB is either 0 or it is a central idempotent of FG. If eB ‰ 0 then
there exist B1, . . . , Bt P BlpGq such that

eB “ eB1
` ¨ ¨ ¨ ` eBt .

Proposition 8.4. The block B dominates B if and only if eB contains eB (if
and only if λBpeBq “ 1).

Proof. Under the natural homomorphism CG Ñ CG we have that eχ ÞÑ eχ as
long as χ P IrrpG{Nq and eχ “ 0 otherwise.
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Now let χ P IrrpBq. We have that λBpeBq “ 1 if and only if

0 ‰ ωχp
ÿ

ψPIrrpBq

eψq˚ “ ωχp
ÿ

ψPIrrpBq

NĎkerpψq

eψq˚

which happens if and only if χ is one of the ψ P IrrpBq with N Ď kerpψq. This
happens if and only if B Ď B. □

Notice that if B dominates B then for z P ZpFGq we have

λBpzq “ λBpzq

(this is because the composition of and λB is an homomorphism ZpFGq Ñ F ,
so it must be λB.)

Theorem 8.5. Let N Ÿ G and write G “ G{N .

(i) If B Ď B P BlpGq where B P BlpGq, then for any D P δpBq there is
P P δpBq with D Ď PN{N .

(ii) If N is a p-group then for any block B P BlpGq there is B P BlpGq with
B Ď B, and δpBq “ tP {N | P P δpBqu.

(iii) If N is a p1-group and B Ď B then IrrpBq “ IrrpBq, IBrpBq “ IBrpBq

and δpBq “ tPN{N | P P δpBqu

Proof. Let ClGpxq be a defect class for B, so that ClGpxq is the conjugacy class

of x “ xN in G. Write ClGpxq “ tx1, . . . , xsu and notice that

ClGpxq “

s
ž

i“1

pClGpxq X xiNq.

Furthermore, if g P G then

pClGpxq X xNqg “ ClGpxq X xgN

and it follows that

t :“ |ClGpxq X xN | “ |ClGpxq X xgN |

and it follows that |ClGpxq| “ t|ClGpxq|, so

ClGpxq` “ tClGpxq`.

Write C{N “ CGpxq, so that |G : C| “ |ClGpxq|. Then

t “
|ClGpxq|

|ClGpxq|
“ |C : CGpxq|.

Since ClGpxq is a defect class for B we have λBpClGpxq`q ‰ 0. Using that B
dominates B,

0 ‰ λBpClGpxq`q “ λBpClGpxq`q “ λBptClGpxq`q “ t˚λBpClGpxq`q
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and it follows that t ‰ 0 mod p. In particular, a Sylow p-subgroup of CGpxq

is a Sylow p-subgroup of C. Further, since λBpClGpxq`q ‰ 0 we have that

D Ď X P SylppC{Nq by the Min–Max theorem. By the Sylow theorems and the

previous comment, there is P P SylppCGpxqq with D Ď X Ď PN{N and part
(a) is proved.

For part (b) notice that N is contained in the kernel of every Brauer character,
so there are blocks B1, . . . , Bt of G with

IBrpBq “

t
ž

i“1

IBrpBiq.

We can now use part (a) and the fact that

νp|G|q ´ dpBq “ mintνpφp1qq | φ P IBrpBqu

(see Problem 3.6) to get the result on the defect groups.

For part (c) notice that if B Ď B then if χ P IrrpBq, viewed as a character of B
it lies over 1N and therefore B covers blp1N q which only contains the ordinary
(and modular) character 1N . It follows that every χ P B contains N in its kernel
and the result follows. □

Observe that the difference between cases (ii) and (iii) is that when N is a
p-group, B is guaranteed to dominate a block of G{N .

8.2. Blocks of PCGpP q

Lemma 8.6. Assume b P BlpNq is such that bG is defined. Then bG covers b.

Proof. By Proposition 7.11 we only have to check that λb and λ
G
b coincide in

ClGpxq` for x P N . Now

λGb pClGpxq`q “ λbppClGpxq XNq`q “ λbpClGpxq`q

and we are done. □

For the next result we need a property of induced blocks which is left as a
problem.

Problem 8.7. Let K ď H ď G. Let b P BlpKq and assume bH is defined. Then
bG is defined if and only if pbHqG is defined. In this case, bG “ pbHqG.

Theorem 8.8 (Extended first main theorem). If B P BlpG|Dq then there is a
unique NGpDq-orbit of blocks of DCGpDq inducing B, and all of them have de-

fect group D. Moreover, if b is such a block, bNGpDq is the Brauer correspondent
of B.
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Proof. Let B P BlpG|Dq. By Theorem 4.5 we know there is b P BlpDCGpDqq

with bG “ B. SinceDŸDCGpDq we have thatD is contained in a defect group P

of b. Since bNGpP q is also defined by the same result, we have that P si contained
in a defect group Q of bNGpDq. By the previous problem, pbNGpP qqG “ bG “ B
and therefore Q is contained in a G-conjugate of D. We conclude that b and
bNGpDq have defect group D. It follows that bNGpDq is the Brauer correspondent
of B.

It remains to prove that all these blocks are NGpDq-conjugate. Let b1, b2 P

BlpDCGpDqq inducing B, so that b
NGpDq

1 “ b
NGpDq

2 is the Brauer correspondent

of B. By Lemma 8.6 bNGpDq covers b1 and b2 so they are NGpDq-conjugate. □

The blocks b P BlpDCGpDqq inducing B are called roots of B. The remaining
part of this lecture consists on studying their structure. Unfortunately, we omit
the proof of the following refinement of Theorem 8.5 in this special case.

Proposition 8.9. Assume G has a normal p-subgroup P and G{CGpP q is a p-
group. Write G “ G{P . The map BlpGq Ñ BlpGq defined by B ÞÑ B if B Ď B
is a bijection. Moreover, CB “ |P |CB.

We need to invoke a result which is a consequence of Brauer’s second main
theorem, which we have not even stated. I am pretty sure that, for normal
defect groups, there has to be an easier proof.

Theorem 8.10. Let χ P IrrpBq where B P BlpGq. If gp is not contained in any
defect group of B then χpgq “ 0.

Proof. See [Nav98, Theorem 5.9]. □

The following is an example of what is known as a nilpotent block. These
were defined by Broué and Puig in a very influential paper, by extending the
classical Frobenius theorem on normal p-complement for blocks. The case of the
following theorem is a very particular case of this type of blocks.

Theorem 8.11. Let P be a p-subgroup of G, let B P BlpG|P q, and assume
G “ CGpP qP . The following hold.

(i) There is a unique θ P IrrpBq with P Ď kerpθq, and in fact

θp1qp “ |G : P |p.

(ii) IBrpBq “ tθ0u.
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(iii) The map

IrrpP q Ñ IrrpBq

ξ ÞÑ θξ

is a bijection, where θξ is deifned as θξpgq “ θpgp1qξpgpq if gp P P and
θξpgq “ 0 otherwise.

Proof. Let B be the unique block of G{P dominated by B. By Proposition
8.9, B has trivial defect group, so it has defect zero. Thus IrrpBq “ tθu and
IBrpBq “ tθ0u. and the first two parts are proved.

Notice that G acts trivially on IrrpP q, because G “ PCGpP q. By Clifford’s
theorem, if χ P IrrpP q then we may write χP “ eξ for some ξ P IrrpP q. Since P
is the unique defect group of B, by Theorem 8.10 we have χpgq “ 0 if gp R P .

We consider now the case gp P P . Since G{CGpP q is a p-group, every p-regular
element is contained in CGpP q so it commutes with P . Thus H :“ xgp1 , P y “

xgp1y ˆ P . Write

χH “
ÿ

ψPIrrpHq

aψψ.

Since χP “ eξ then the constituents of χH are of the form λˆ ξ, so we can write

χH “ α ˆ ξ

where α “ eχxgp1 y. This implies that χpgp1q “ αpgp1qξp1q. Also, since g P H,

χpgq “ αpgp1qξpgpq “
χpgp1q

ξp1q
ξpgpq.

Now recall that θ0 is the unique Brauer character of B. It follows that χpgp1q “

dχθ0θpgp1q where dχθ0 “ χp1q{θp1q, so

(8.2.1) χpgq “
dχθ0

ξp1q
θpgp1qξpgpq.

We now need to use two easy to prove group theoretical facts which we leave to
the reader. First, since G0 Ď CGpP q we have that the map

G0 ˆ P Ñ tg P G | gp P P u

px, yq ÞÑ xy

is a bijection. The map

G0 Ñ pG{P q0

x ÞÑ xP

is also a bijection.
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Using the first bijection, and that χpgq “ 0 if gp R P we compute

rχ, χs “
1

|G|

ÿ

gPG

χpgqχpg´1q “
1

|G|

ÿ

gPG
gpPP

χpgqχpg´1q “

“

ˆ

dχθ0

ξp1q

˙2 1

|G|

ÿ

xPP

ÿ

yPG0

θpyqθpy´1qξpxqξpx´1q “

“

ˆ

dχθ0

ξp1q

˙2 1

|G|

ÿ

yPG0

θpyqθpy´1q

˜

ÿ

xPP

ξpxqξpx´1q

¸

“

“

ˆ

dχθ0

ξp1q

˙2 1

|G : P |

ÿ

yPG0

θpyqθpy´1q.

Recall that θ has defect zero as a character ofG{P , so it vanishes in the p-singular
conjugacy classes of G{P . Thus

1

|G : P |

ÿ

yPG0

θpyqθpy´1q “
1

|G|

ÿ

yPG
0

θpyqθpy´1q “
1

|G|

ÿ

yPG

θpyqθpy´1q “

“ rθ, θs “ 1

so rewritting the above expression we obtain 1 “ rχ, χs “

´

dχθ0

ξp1q

¯2
so

χp1q{θp1q “ dχθ0 “ ξp1q.

By going back to Equation 8.2.1 we see that χpgq “ θpgp1qξχpgpq for a uniquely
determined ξχ P IrrpP q. It remains to show that χ ÞÑ ξχ is a bijection. The fact
that it is injective is immediate (χ is totally determined by θ and ξ).

Using again that θ has defect zero as a character of G{P , the Cartan matrix of
blpθq P BlpG{P q is just p1q. By using the last part of Proposition 8.9, the cartan
matrix of B is p|P |q. Thus

|P | “
ÿ

χPIrrpBq

pdχθ0q2 “
ÿ

χPIrrpBq

ξχp1q2 ď
ÿ

τPIrrpP q

“ |P |

and it follows that the map is surjective. □

The character θ from the previous proposition is known as the canonical char-
acter for B, and it is determined up to NGpDq-conjugation.

Corollary 8.12. In the above situation, the set of heights of B is tνpξp1qq |

ξ P IrrpP qu.
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LECTURE 9

Blocks and normal subgroups III

For the final lecture of the course, we prove Brauer’s height zero conjecture for
blocks with normal defect group, and we use this as an excuse to introduce
even more results on block coverings. A bit of the history and lore around the
conjecture will be introduced in Section 9.3.

9.1. Covering blocks and defect groups

We begin by proving some results of Fong on the relation between the defect
groups of blocks of G and the blocks they cover in some N Ÿ G.

Recall that if b P BlpNq then by Problem 7.4

ÿ

B1PBlpG|bq

eB1 “

t
ÿ

i“1

ebi

where teb1 , . . . , ebtu is the set of G-conjugates of b. Now the elements ebi are
linear combinations of ClN pxq` for x P G, but since the elements eB1 are sums
of ClGpyq for y P G, it follows that we may write

ÿ

B1PBlpG|bq

eB1 “
ÿ

xPG{„

xPN

ubpxqClGpxq`.

Proposition 9.1. Let b P BlpNq and let B P BlpG|bq. Write
ÿ

B1PBlpG|bq

eB1 “
ÿ

xPG{„

xPN

ubpxqClGpxq`

as before. Then there is some x P N with ubpxq ‰ 0 ‰ λBpClGpxq`q. Moreover
if dpBq ě dpB1q for all B1 P BlpG|bq then δpClGpxqq “ δpBq.

Proof. We have

1 “ λB

¨

˝

ÿ

B1PBlpG|bq

eB1

˛

‚“ λB

¨

˚

˝

ÿ

xPG{„

xPN

ubpxqClGpxq`

˛

‹

‚

so the first part follows.
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58 9.1. Covering blocks and defect groups

Assume now that dpBq ě dpB1q for all B1 P BlpG|bq. Since λBpClGpxq`q ‰ 0, by
the Min–Max theorem we have that if D P δpClGpxqq, there is some P P δpBq

with P Ď D. Now, since

eB1 “
ÿ

xPG{„

aB1pClGpxqqClGpxq`

so
ÿ

B1PBlpG|bq

eB1 “
ÿ

B1PBlpG|bq

ÿ

xPG{„

aB1pClGpxqqClGpxq` “

“
ÿ

xPG{„

ÿ

B1PBlpG|bq

aB1pClGpxqqClGpxq`

it follows that

ubpxq “
ÿ

B1PBlpG|bq

aB1pClGpxqq

so there is some B0 P BlpG|bq with

aB0pClGpxqq ‰ 0

and from the Min–Max theorem it follows that

P Ď D Ď P0 P δpB0q.

Since dpBq ě dpB0q this implies |P | ě |P0| which forces P “ D “ P0, and
D P δpBq. □

Theorem 9.2 (Fong). Let b P BlpNq be G-invariant and assume B P BlpG|bq is
such that dpBq ě dpB1q for all B1 P BlpG|bq. If P P δpBq we have that p does
not divide |G : PN | and P XN P δpbq.

Proof. First notice that, arguing as before,

eb “
ÿ

B1PBlpG|bq

eB1 “
ÿ

x{„G
xPN

ubpxqClGpxq`.

Notice further that

eb “
ÿ

yPN{„

abpClN pyqqClN pyq`

and it follows that ubpyq “ abpClN pyqq for all y P N .

By Proposition 9.1, there is some x P N with ubpxq ‰ 0 ‰ λBpClGpxq`q and
P P δpClGpxqq. Now

ClGpxq “
ď

gPG

ClN pxqg

so ClGpxq is the union of a t different G-conjugates of ClN pxq. More precisely,

t “
|ClGpxq|

|ClN pxq|
“

|G||CN pxq|

|N ||CGpxq|
“

|G||CN pxq|

|NCGpxq||CGpxq XN |
“ |G : NCGpxq|.
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Recall that λbgpClN pxq`q “ λbppClN pxq`qgq. Since b is G-invariant, it follows
that λbpClN pxq`q “ λbppClN pxq`qgq. By Passman (Proposition 7.11)

0 ‰ λBpClGpxq`q “ λbpClGpxq`q “ t˚λbpClN pxq`q

so we deduce that p does not divide t “ |G : NCGpxq|. Since P P SylppCGpxqq,
it follows that p does not divide |G : NP |. Furthermore,

abpClN pxqq “ ubpxq ‰ 0

and it follows that

abpClN pxqq ‰ 0 ‰ λbpClN pxq`q

so ClN pxq is a defect class for b. Now CGpxq X N “ CN pxq and P X N P

SylppCN pxqq so P XN P δpbq. □

The fact that P XN P δpbq from the previous theorem is in fact true even if we
do not assume b is G-invariant. This is a (harder to prove) theorem of Knörr
[Nav98, Theorem 9.26].

9.2. Regular blocks

We say a block B P BlpGq is regular with respect to N Ÿ G if λBpClGpxq`q “ 0
for every x R N . Notice that this does not involve any blocks of N !

Proposition 9.3. Assume B P BlpGq covers b P BlpNq. Then B is regular with
respect to N if and only if bG is defined and bG “ B.

Proof. Assume bG is defined and bG “ B. If x P GzN then ClGpxq X N “ H.
We have

λGb pClGpxq`q “ λbppClGpxq XNq`q “ 0

and since B “ bG we have λBpClGpxq`q “ 0 for all x P GzN . By definition, B is
regular with respect to N .

Assume now that B is regular. If x P GzN then it follows arguing as before that
λGb pClGpxq`q “ λBpClGpxq`q “ 0. If x P N then by Passman (Proposition 7.11)
we have

λGb pClGpxq`q “ λbppClGpxq XNq`q “ λbpClGpxq`q “ λBpClGpxq`q

and we conclude λGb “ λB, so we are done. □

Proposition 9.4. Let B P BlpG|Dq. If CGpDq Ď N then B is regular with
respect to N .

Proof. Let x P G and assume λBpClGpxq`q ‰ 0. By the Min–Max theorem
we have that D Ď P P δpClGpxqq which means that D Ď CGpxq, which implies
x P CGpDq. By hypothesis, x P N , so λB must vanish in the conjugacy classes
outside N . □
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60 9.3. Brauer’s height zero conjecture

Corollary 9.5. Let QŸ G be a p-subgroup and let b P BlpQCGpQqq. Then bG

is the unique block of G which covers b.

Proof. We know from Theorem 4.5 that bG is defined, and from Lemma 8.6
that bG covers b. Let B P BlpG|bq. Since Q Ÿ G it follows that Q Ď OppGq Ď

D P δpBq. This implies that CGpDq Ď CGpQq Ď QCGpQq and by Proposition
9.4, B is regular with respect to QCGpQq. Now Proposition 9.3 implies that
bG “ B as desired. □

Theorem 9.6. Let b P BlpDCGpDq|Dq and let T be the stabilizer of b in NGpDq.
Then bG has defect group D if and only if |T : DCGpDq| is not divisible by p.

Proof. First, we claim that we may assume D Ÿ G. In other words, we claim
that bG has defect group D if and only if bNGpDq has defect group D. If bG has
defect group D then so does b (for example, argue as in the first part of the

Extended first main theorem) and by the same result, bNGpDq has defect group

D. Conversely, if bNGpDq has defect group D then using that pbNGpDqqG “ bG

we have that bG has defect group D by Brauer’s first main theorem.

Next we claim that we may assume b isG-invariant (nowDŸG soDCGpDqŸG).
Now for any DCGpDq ď H ď G we have that bH is defined and covers b by
Theorem 4.5 and Lemma 8.6. In particular both bT and bG cover b. Now pbT qG

is defined by the Fong–Reynolds theorem and pbT qG “ bG, so bT is the Fong–
Reynolds correspondent of bG over b. Since the defect groups of bT are defect
groups of bG, and DŸ G it follows that δpbT q “ tDu if and only if δpbGq “ tDu,
so we are done (we are using that if a defect group of a block is normal then it
is the unique defect group of a block).

Therefore D Ÿ G and b is G-invariant. By Corollary 9.5, bG is the unique block
covering b. bG satisfies the hypothesis on maximal defect in Fong’s theorem
9.2 and we deduce that if P P δpbGq we have P X DCGpDq P δpbq “ tDu, so
PCGpDqD “ PCGpDq and |G : PCGpDq| is not divisible by p. Since P X

CGpDqD “ D it follows that D ă P if and only if DCGpDq ă PCGpDq (indeed,
if DCGpDq “ PCGpDq then P Ď DCGpDq X P “ D). Therefore p does not
divide |G : DCGpDq| if and only if D “ P . □

9.3. Brauer’s height zero conjecture

Stated in 1955 by Richard Brauer (and also included as part of Problem 23 of
his famous list of problems), Brauer’s height zero conjecture states that

Conjecture 9.7. Let B P BlpG|Dq. Then IrrpBq “ Irr0pBq if and only if D is
abelian.

We prove now the case where D Ÿ G, a theorem due to W. F. Reynolds from
1963.
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9. Blocks and normal subgroups III 61

Theorem 9.8 (Reynolds). Let B P BlpG|Dq and assume DŸ G. Then IrrpBq “

Irr0pBq if and only if D is abelian.

Proof. We argue by induction on |G|.

Let b P BlpDCGpDq|Dq be a root of B and let T be its stablizer in G and B1

the Fong–Reynolds correspondent of B in T . Since the defect groups of B1 are
defect groups of B, if T ă G then by induction, all characters of B1 have height
zero, and by the Fong–Reynolds correspondence, so do all characters of B. Thus
we may assume b is G-invariant. In particular, it follows from Theorem 9.6 that
|G : DCGpDq| is p1.

Next we claim that the set of heights of characters in B coincides with the set
of characters in b. Indeed, let χ P IrrpBq. Since bG “ B then we have that B
covers b by Lemma 8.6. Now if χ P IrrpBq then any θ under χ lies in Irrpbq. We
have that χp1q{θp1q divides |G : DCGpDq|, a p1-number. Thus χp1qp “ θp1qp.
Conversely if θ P Irrpbq we know there is χ P IrrpBq lying over θ, and arguing in
the same way we get θp1qp “ χp1qp. We conclude that

tχp1qp | χ P IrrpBqu “ tθp1qp | θ P Irrpbqu

and the claim follows. In particular, Irrpbq “ Irr0pbq if and only if IrrpBq “

Irr0pBq.

Now by the Corollary 8.12 of Theorem 8.11 we know that the set of heights of
b is exactly tνpξp1qq | ξ P IrrpDqu. It follows that IrrpBq “ Irr0pBq if and only if
Irrpbq “ Irr0pbq if and only if every character in IrrpDq is linear, which happens
if and only if D is abelian. □

For the past 70 years, Brauer’s height zero conjecture has been a central problem
in the modular representation theory of finite groups. It was proved for p-solvable
groups by D. Gluck and T. R. Wolf in 1984, in an already extremely complicated
theorem involving group actions and orbit sizes. There is a whole book [MW93]
devoted to the techniques involved in this proof (and related ones).

In 1988, T. Berger and R. Knörr proved that the “if” direction holds for every
finite group provided that it holds for finite simple groups. This was finally
proved by R. Kessar and G. Malle in 2013 in a widely celebrated paper.

In 2014, G. Navarro and B. Späth gave an extremely technical reduction theorem
for the “only if” direction. We introduce some context:

Conjecture 9.9 (Alperin–McKay). If b is the Brauer correspondent block of B
then | Irr0pBq| “ | Irr0pbq|.

The Alperin–McKay conjecture was reduced to a problem on simple groups
(known as the inductive Alperin–McKay conjecture) by B. Späth in 2011. It is
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62 9.3. Brauer’s height zero conjecture

one of the most important counting conjetures in our field. It was generalized
to a much more general conjecture known as Dade’s projective conjecture.

G. Robinson proved that, assuming Dade’s projective conjecture, one could find
certain bijections above height zero characters of Brauer correspondent blocks.
M. Murai (who I believe was either an accountant or a high school teacher)
proved that using this bijection, Brauer’s height zero conjecture holds. The
reduction theorem of Navarro and Späth states that, if the inductive Alperin–
McKay conjecture holds for every finite simple group, then this bijection exists
and therefore Brauer’s height zero conjecture holds. In 2022 L. Ruhstorfer proved
the inductive Alperin–McKay conjecture for p “ 2, and as a corollary obtained
Brauer’s height zero conjecture for this prime (this paper was accepted recently
in the Annals of Mathematics).

For odd primes the proof remained a challenge, as well as the proof of the in-
ductive Alperin–McKay conjecture. Using a different reduction theorem and
different conditions on finite simple groups, G. Malle, G. Navarro, A. A. Scha-
effer Fry and P. H. Tiep were able to prove the “only if” direction for odd
primes, thereby settling Brauer’s height zero conjecture. This paper has also
been accepted recently in the Annals (hopefully the graduate students reading
this understand that this is an unbelievable achievement and out of reach for
the vast majority of mathematicians).
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