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Preface

Throughout these notes, G will always be a finite group and p a prime. The aim
of the course will be to introduce the audience to the modular representation
theory of finite groups, introduced by Brauer in the 1930s.

These notes are based on Gabriel Navarro’s book [Nav98] and most of the no-
tation and proofs are inherited from there. My notation for finite groups follows
[Isa08] and for complex characters [Nav18] or [Isa06]. Certain notations (such
as the conjugacy class sums) appeared first in Britta Spéth’s papers.

Please, let me know of any mistakes at josep.m.martinez@uv.es. This version is

from October 9th, 2024.
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LECTURE 1

Brauer characters

1.1. Modules and representations

In these notes we avoid modules as much as possible and only invoke them
whenever necessary. If F'is a field (and very soon, F' will be a very particular
field) then F'G denotes the group algebra of G with coefficients in F'. If char(F")
divides |G| then Maschke’s theorem (and therefore Wedderburn’s) no longer
applies and things get a bit more complicated, but also more interesting.

An F-representation of G is a group homomorphism X : G — GL,(F). By
extending linearly, we may view these as algebra homomorphisms X : FG —
Mat,, (F'), also known as representations of F'G. By restricting, representations
of FG give F-representations of G.

If V is an F'G-module, then V induces a representation of F'G by choosing a
basis B of V' and defining X(x) to be the matrix associated to v — vz with
respect to B. Conversely, if V' = F™ and X is a representation of F'G, then
V becomes an F'G-module by defining vz = vX(z) for x € FG. Therefore the
study of F'G-modules is equivalent to the study of representations of FG (and
therefore to the study of F-representations of G).

Two representations X7, Xs of F'G are similar if there is a regular matrix M €
GL,(F) with M~'X1(2)M = Xy(x) for all z € FG. Tt is straightforward to
check that X7 and X5 are similar if and only if their associated F'G-modules are
isomorphic.

We say a representation is irreducible if its associated F'G-module is simple.
If F'G is semisimple then it is well known that every representation X of G is
similar to a diagonal representation

X1 ... 0



2 1.2. Brauer characters

but this is not the case if F'G is not semisimple. However we can still guarantee
that X is similar to a representation of the form

X1 ... *
0 ... X
where the * is not necessarily zero (so the representation is in upper triangular

block form). A representation of G is irreducible if and only if it is not similar
to a representation in block form

* *

0 =/

1.2. Brauer characters

Let R denote the ring of algebraic integers in C. It is well known that complex
characters take values in R. Let M be a maximal ideal of R containing pR.
Then F := R/M is a field of characteristic p and let

*R—->F
be the canonical ring epimorphism. Let

U={eC|m =1 for some integer m coprime to p}.
Notice that Z* = Z/pZ.

LEMMA 1.1. The following hold.
(i) The restriction * : U — F* is a group isomorphism.

(ii) F is the algebraic closure of Z/pZ.

Let G° = {x € G | pto(z)} (warning: this is not a subgroup of G in general!), and
let X : G — GL,(F) be an F-representation. Let g € G°. Since F is algebraically
closed and ¢ has finite order, X'(g) is diagonalizable and its eigenvalues lie in
F*. By Lemma 1.1, there exist uniquely determined &1, ...,&, € U such that
X (g) is similar to diag(&5, ..., &*). Then the map

0:G'—>C
g8+ -+ &

is the Brauer character afforded by X. We denote by IBr(G) the set of
irreducible Brauer characters (associated to irreducible F-representations). The
set IBr(G) may depend on the maximal ideal M chosen.

Of course, the restriction that g € GY above is unnecessary to find such &, ..., &, €
U. We sill justify this restriction below.
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1. Brauer characters 3

The following is totally straightforward and can be proved in the exact same
way as for complex characters. We denote by T the complex conjugate of « € C.

LEMMA 1.2. Let ¢ be a Brauer character of G. Then
(i) v ecf(G?),
(i) (g~") = »(9),

(iii) % : G° — C defined by B(g) := »(g) is a Brauer character of G (and its
associated module is the dual of the module associated to ¢),

(iv) H < G then the restriction g : H® — C is a Brauer character of H
(and its associated module is the module associated to ¢ but viewed as
an F'H-module).

LEMMA 1.3. A class function v € cf(G°) is a Brauer character iff it is a nonzero
nonnegative integral linear combination of irreducible Brauer characters.

SKETCH OF PROOF. The if direction is immediate, and the only if direction
follows by writing the F-representation affording v in upper diagonal block
form and noticing that 1 is the sum of the Brauer characters appearing in the
diagonal. O

We can now justify why we restricted ourselves to GY. We’ll use the following
elementary group theoretical fact quite often: every element g € G can be written
as g = gpgy where g, has p-power order, g,; has order coprime to p and g,g,y =
gp gp- Further, both belong to {g).

LEMMA 14. If X : G — GL,(F) is an F-representation affording the Brauer
character o, then for all g € G we have

trace(X (g)) = ¢(gp)™.

PROOF. There is no loss in assuming that ¢ is irreducible and that G = {(g).
Therefore X : G — F* is a group homomorphism and X(g) = X(gp)X (gy)-
Now X(gp) has p-power order in F* so X(gp) = 1 and the result follows. O

PROPOSITION 1.5. The set IBr(G) is linearly independent.

SKETCH OF PROOF. Use the fact that the set of trace functions of representations
G — GL,(F) is linearly independent (see [Nav98, Theorem 1.19]) and Lemma
1.4. ([l

DEFINITION 1.6. If x € Char(G) then x° denotes the restriction of x to G°.
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4 1.3. Decomposition numbers

More notation. We let S be the localization of R at M, that is
S={r/s|reR,se R\M}
and extend * to an homomorphism * : § — F' by

(r/5)* = r*(s%) ™
Perhaps it is useful to mention here that an integer belongs to M if and only if

it is divisible by p.
The following deep theorem is [Nav98, Theorem 2.7].

THEOREM 1.7. If X : G — GL,(C) is a complex representation, then there is a
representation Y of G similar to X with entries in S.

We extend * to a ring homomorphism Mat, (S) — Mat,(F) by applying * to
the entries of a matrix A € Mat,,(S). Notice that det(A*) = det(A)*. We also
extend it to a ring homomorphism S[z] — F[z]. It is straightforward to check
that if a polynomial p(z) € S[z] has all roots ai,...,a¢ in S then p(z)* has
roots of, ..., af.

LEMMA 1.8. If X : G — GL,(C) affords x with entries in S. Then X* : G —
GL,,(F) defined by
A% (g) = X(9)"

affords the Brauer character x°.

PROOF. First notice that X* : G — GL,,(F) is in fact an homomorphism (we
are applying * to all the entries). Let g € G° and let &,...,& € U be the
eigenvalues of X(g). Using that det(z] — X(g))* = det(zl — X*(g)) we have
that &, ..., & are the eigenvalues of X*(g). O

It is true (but much harder and not necessary for our purposes) that we may
find a represenetation with entries in R affording any x € Char(G). However, it
will be convenient to work in S.

It follows from Lemma 1.8 and Theorem 1.7 that for all x € Char(G) we have
that x° is a Brauer character of G.

1.3. Decomposition numbers

Since IBr(G) is a linearly independent set of C, it follows that we may write
XO = Z dypp
@€elBr(G)

for certain uniquely defined integers (which are nonnegative by 1.3). The num-
bers d,,, are called the decomposition numbers.

Universita degli Studi di Firenze J. Miquel Martinez



1. Brauer characters 5

THEOREM 1.9. The set IBr(G) is a basis of cf(GY). In particular, |IBr(G)]
coincides with the number of conjugacy classes of p-reqular elements of G.

PROOF. By Proposition 1.5 it suffices to show that any 3 € cf(G°) can be written
as a linear combination of IBr(G). Now, let § € cf(G) be any extension of 5 (so
that 8° = 3). Then using that Irr(G) is a basis of c¢f(G) we may write

0= Z Ay X

x€elrr(G)

and therefore

B = Z ayx” = Z ax Z dyep

x€lrr(G) x€lrr(G) pelBr(G)
and we are done. O
We define the decomposition matrix of G by

D = (dyy)yerrn(G),pelBr(G)-
(That is, Brauer characters in the columns, ordinary characters in rows.) This
matrix is completely independent of the maximal ideal M chosen.

PrROBLEM 1.10. Prove that the decomposition matriz has maximum rank.
As a consequence, for any ¢ € IBr(G) there is some x € Irr(G) with d,, # 0.
PROBLEM 1.11. If p does not divide |G|, prove that IBr(G) = Irr(G).

(Hint: use Maschke and Wedderburn to obtain ¥, cip,(q) o(1)? =1G|.)

The Cartan matrix is defined by C' = D!D, and it has many interesting and
deep properties which, unfortunately, we shall not discuss.

1.4. Projective indecomposable characters

Let ¢ € IBr(G). We define the projective indecomposable character asso-
ciated to ¢ by
Z dxeX-

x€lrr(G)

Here we will only prove the necessary facts for our purposes, but these characters
are certainly very interesting. They are a basis of the set of class functions of G
which vanish off the p-regular conjugacy classes, and they have some properties
connected to the Cartan matrix. For more on these characters, see [Nav98,
Chapter 2].

PROPOSITION 1.12. Let ¢ € IBr(G) and g € G with p | o(g). Then ®,(g) = 0.

Universita degli Studi di Firenze J. Miquel Martinez



6 1.5. Kernels of Brauer characters

PRrROOF. Let z € GY. By the second orthogonality relation for complex charac-
ters, we have that

>, x@x(@) =0

x€lrr(G)
but the LHS equals

2 @ Z dypp(z) | = Z o(x) 2 dxcp@

x€elrr(G) pelBr(G) pelBr(G) x€lrr(G)
= ) (el
elBr(G)

which implies that the linear combination

Z q’w(Q)SD =0

@€elBr(G)

and since IBr(G) is a linearly independent set, this implies ®,(g) = 0 for p-
singular g. O

COROLLARY 1.13 (Dickson). If ¢ € IBr(G) then |G|, divides ®,(1).

PROOF. Notice that @, is a character of G. Then if P € Syl,(G) we have (®,)p
is a character of P and therefore [(®,)p,1p] is a nonnegative integer. Now @,
vanishes in every element of P except 1, which means that

1 d,(1)
[((I)¢)Pv lp] = m Z q)cp(f) = |¢P‘

and we are done. O

1.5. Kernels of Brauer characters
Let ¢ € IBr(G) be afforded by the F-representation X. Then we define
ker(y) := ker(X).

Notice that, unlike with ordinary characters, we cannot guarantee ker(y) is the
set of elements g € G where ¢(g) = (1) since ¢(g) is only defined for p-regular
elements g. (It is true that if g € GO then g € ker(y) if and only if ¢(g) = (1),
see [Nav98, Lemma 6.11].)

If ¢ € IBr(G) with N < ker(y) then we can define (Ng) = ¢(gy) and P €
IBr(G/N) (check this! Can you find an F-representation that affords ©7). We
identify @ with ¢ and thus view IBr(G/N) as a subset of IBr(G).

THEOREM 1.14. Let X be an irreducible F-representation of G. Then O,(G) <
ker(X).

Universita degli Studi di Firenze J. Miquel Martinez




1. Brauer characters 7

PRrROOF. Let P = Op(G). We have that F'P has a unique simple module, the
trivial one. Let V' be a (simple) F'G-module affording X'. Viewing V as an F P-
module we have that if 0 < W <V is a simple F'P-submodule, W < Cy (P).

Now using that P<1 G it is straightforward to see that Cy (P) is G-invariant and
thus it is an F'G-submodule of V. Since V is simple it follows that Cy (P) =V,
or in other words that vx = v for all v € V and z € P. Therefore, for z € P we
have that X' (z) = I and we are done. ]

PROBLEM 1.15. A Brauer character ¢ is said to be linear if (1) = 1. Denote
by LinBr(G) the set of linear Brauer characters of G. Prove that
(i) LinBr(G) < IBr(G),

(ii) if N = O (G)G' (the smallest normal subgroup N such that G/N is
abelian and of p'-order), x — x° is a bijection Irr(G/N) — LinBr(G),

(iii) |LinBr(G)| = |G : G'|,
(iv) LinBr(G) is a finite group,

(v) the map from (ii) is a group isomorphism.

Universita degli Studi di Firenze J. Miquel Martinez






LECTURE 2

Blocks

If x € G then we denote by €lg(z) the conjugacy class of G containing z. Then
Clo(x)t = ) yeZ(KQ)
yellg(z)

for any field K, and in fact we have that {Clg(z)™ | x € G/ ~} is a basis of
Z(K@G) (we denote by G/ ~ a set of representatives of the conjugacy classes of
G).

It is well known that if x € Irr(G) then x(x) € R for all x € G, and in fact

€l (z)|x(2)
x(1)
Thus, x defines an algebra homomorphism

wy 1 Z(CG) - C

e R.

by setting
_[elg(@) ()
x(1)
In fact, if X' is a complex representation affording y, we have that X' (€lg(z)1) =
wy (Clg () 1) I,
Using the fact that wy (€lg(xz)") € R we may construct an F-linear map
Ay 1 Z(FG) - F
Cla(z)™ = wy(Clg(z) )"

wy (Clg(z)™) € R.

and extending linearly.

Let ¢ € IBr(G) be afforded by an F-representation X. Notice that X (&€lg(z)™")
is a scalar matrix, so we may write

X(Clg(x)™) = Ap(Cla(z) ")
and again, this defines an F-linear map A, : Z(F'G) — F.

DEFINITION 2.1. The p-blocks of G are the equivalence classes in Irr(G)UIBr(Q)
under the relation x ~ ¢ if A\, = A,.



10 2.1. Decomposition matrices for blocks

If B is a p-block then Irr(B) = B n Irr(G) and IBr(B) = B n IBr(G). You will
have to believe me for the moment, but these do not depend on the choice of
the maximal ideal M (we’ll see why later, maybe). Also, it makes sense to set
the notation Ap := A, for whatever x € Irr(B) u IBr(B). We denote by bl(%))
the block to which some v € Irr(G) U IBr(G) belongs.

THEOREM 2.2. Let x € Irr(G) and ¢ € IBr(G) be such that dy, # 0. Then
Ay = Ap.

PRrROOF. Let X be a representation taking values in S that affords x. Then A'*
is an F-representation affording x°. Now X'* is similar to an F-representation
X’ in upper-triangular block form.

Since dy, # 0 then one of the representations ) appearing in the block diagonal
of A" affords ¢. Now for all 2 € G, X'(€Clg(x)") = A\ (Clg()") 1), which

implies that Y(€lg(z)*) = A\ (Clg(x)h) 1

o(1) as desired. O

It follows from the above that
IBr(B) = {¢ € IBr(G) | dy, # 0 for some x € Irr(B)}.

Notice also that it implies that, after rearranging by blocks, the decomposition
matrix has block diagonal form:

Dp, 0 0
0 Dsg, 0
D=
0 .0
0 0 Dg,

Since D has rank |IBr(G)|, notice that every submatrix Dpg has rank |IBr(B)|. In
particular, [(B) := |IBr(B)| < |Irr(B)| =: k(B). We might see that k(B) = I(B)
actually implies k(B) = 1. The set of p-blocks of G is denoted by BI(G).

2.1. Decomposition matrices for blocks

Our next goal is to show that if B € BI(G) then Dp is not a block diagonal
matrix (independently of any rearrangements of rows and columns).

2.1.1. The Brauer graph. We define a graph on Irr(G) as follows: we
link x and ¢ if there is ¢ € IBr(G) with dy, # 0 # dy,. The graph containing
Irr(G) as vertices and with connected vertices the linked characters is known as
the Brauer graph. We know that any B € Bl(G) satisfies that Irr(B) is the
union of connected components of this graph. Our next goal is to see that the
connected components of this graph are precisely the sets Irr(B) with B € BI(G).
If A< Irr(G) is the union of connected components of the Brauer graph, then
we denote by

IBr(A) = {¢ € IBr(G) | dy, # 0 for some x € A}.
Universita degli Studi di Firenze J. Miquel Martinez




2. Blocks 11

PROPOSITION 2.3 (Osima). Let A as above. If g€ G° and x € G then

dMix(@x@) = D, ¢(g)Py(x)

xeA pelBr(A)

ProOOF. First notice that ¢ € IBr(A) and x € Irr(G) then dy, # 0 implies x € A
(indeed, since ¢ € IBr(.A) there is ¢ € A with dy, # 0, so x and ¢ are connected,
but since A is a union of connected components we have x € A. It follows that

Z dyox = ®o.
xeA
Thus
Dix(x(@) =Y | DL dele) |x(@) =
XEA x€A \ ¢elBr(G)
= ), (Z dwx(fv)> pl9)= Y, Pu(2)elg)
peIBr(A) \xeA p€IBr(A)
as desired. O

COROLLARY 2.4 (Weak block orthogonality). Let B € BI(G), g € GY and z €
G\G°. Then
> x(g)x(@) =o0.

x€lrr(B)

PROOF. Apply Proposition 2.3 to Irr(B) = A and use Proposition 1.12 to get
that the RHS vanishes. O

2.1.2. The primitive central idempotents of CG. We say an element
e in an algebra A is an idempotent of A if €2 = e and e # 0. Further, we say e
is a primitive central idempotent if it can not be written as a sum of central
idempotents. It is a classical fact that if e is a central idempotent in A then e
is primitive if and only if eA is an indecomposable (two-sided) ideal of A (i.e. it
can not be written as a direct sum of proper ideals).

If we want to decompose F'G as a direct sum of indecomposable F'G-modules, it
might be convenient to find the primitive central idempotents of F'G. We have
mentioned before that the primitive central idempotents of CG are given by

ex = >,<é1|) dix(g g
geG

where x runs over Irr(G), and that e, CG is the indecomposable two-sided ideal
of CG corresponding to x. We will use the e,’s to build the primitive central
idempotents of F'G in Section 2.3.

Universita degli Studi di Firenze J. Miquel Martinez



12 2.1. Decomposition matrices for blocks

If ¢ € Irr(G) then notice that
¥(1 _
ey = f D vl hela(x)
xeG/~

Thus if y € Irr(G) we have that, by orthogonality of characters,

S vl x@ee@)] = P = by,

e x(1)

Wy (€
x(e IGIX

If A< Irr(G) we will denote by
fa:= Z -
XEA
Since e, € Z(CQG) it follows that we may write
fa= Y fal@lg(x)h)ela(x).
zeG/~

Let us now work out a formula for the coefficient f4(€lg(z)"). By using the
formula above, we have

DL ex= 21| D x(Wx(a Helg@)t | =

xeA .A zeG/~
Ly (2 1>) ()
zeG/~ \xEA
and we conclude that
fa(€lo(x Z
XE.A

and fortunately, Proposition 2.3 gives an alternative description for these coef-
ficients!

PROPOSITION 2.5. Let A < Irr(G) be a union of connected components of the
Brauer graph. Then

(i) fa € Z(SG) (that is, fa(Cla(z)*) e S),
(i) fa(Cla(@)") =0 if 2 ¢ GO.
PROOF. Let 2 € G\G°. By Proposition 2.3, we have
fa@le)) = 2 3 e,
| | pelBr(A)

Now since 27! is not p-regular and ®,, vanishes outside G°, we conclude that
fa(€lg(x)t) =0, and part (ii) follows.

Universita degli Studi di Firenze J. Miquel Martinez




2. Blocks 13

If 2 € GO then by the same result but reversing the role of 2! and 1 we get

fa@@) ) = Y ela)e,0)

’ ‘ weIBr(A)

and since we know that ¢(x~1) is a sum of elements in U < R then it suffices
to show that

Py (1)
eS
|G|
but this holds because |G|, divides ®,(1) (since M NZ = pZ, an integer belongs
to M if and only if it is divisible by p). O

*

We extend our homomorphism * : § — F even more to an homomorphism

SG — FG by

(2%0*:2@x

zeG zeG
and notice that it maps Z(SG) onto Z(FG) by
*

Z a;Clg(x)t | = 2 aiClg(z)™.

ze€G/~ z€G/~

If z€ Z(SG) and x € Irr(G) then wy(2)* = A, (2%).

Finally, we get to the main result of this section.

THEOREM 2.6. If A < Irr(G) is such that fa € Z(SG) then there is Q < Bl(G)
with
A= U Irr(B).
BeQ
In other words, if x € A then Irr(bl(x)) < A.

Proor. If x € Irr(G), then have that w,(f4) # 0 if and only if x ¢ A (and
wy(fa) = 1if x € A). Since f4 € Z(SG), by the above discussion this implies
that A (f%) = 0if x ¢ A and A\, (f%) = 1 otherwise. Since A\, = Ay if 1) and x
belong to the same block, it follows that A contains every ordinary character in
the block of x or it contains none. O

COROLLARY 2.7. If B € BI(G) then Irr(B) is a single connected component of
the Brauer graph. In particular, Dp is not of the form

G2

Universita degli Studi di Firenze J. Miquel Martinez




14 2.2. Blocks of defect zero

PROOF. Assume A < Irr(B) is a connected component of the Brauer graph.
By Proposition 2.5, f4 € Z(SG) so A contains all of Irr(B) and the first part
follows. For the second, notice that such a form of the decomposition matrix
would imply that there are two distinct connected components inside Irr(B). O

2.2. Blocks of defect zero

The following results were proved by Brauer and Nesbitt, and can be deduced
from the results in the previous section.

THEOREM 2.8 (Brauer—Nesbitt). Let B € BI(G). Then following are equivalent:
(i) k(B) = 1(B),
(i) if x € Irr(B) and all g € G\G® we have x(g) = 0,
(ili) there is x € Irr(B) with x(1)p = |G|jp,
)

k(B) =

(iv

PrOOF. If k(B) = I(B), then Dp is a square matrix of maximal rank and
therefore it is invertible. Write (Dp)™' = (ayy) and for a fixed x € Irr(B)
compute

Z apx Py = Z Gy Z dypot | = Z Z Apx iy |V

p€elBr(B) p€elBr(B) Yelrr(B) Yelrr(B) \ ¢€lBr(B)
And notice that
Z Aoy i

©€IBr(B)

is precisely the value entry of the matrix Dg(Dpg)~! in the coordinate corre-
sponding to x%, i.e. dy,. Therefore

Z apy Py = X
p€elBr(B)
and it follows that x vanishes in the p-singular elements, so (i) implies (ii).
Now if (ii) holds then [xp,1lp] = ﬁerP x(z) = %}R must be an integer, so
(iii) follows.
If (iii) holds then
x(1 -
ey = |é|) Z x(z™Hz

zelG
belongs to Z(SG) so by Theorem 2.6 we have that {x} = Irr(B) and (iv) holds.

Since [(B) > 0, (iv) implies (i). O
Universita degli Studi di Firenze J. Miquel Martinez




2. Blocks 15

In fact, the following follows too, but this needs a fact we have not proved: that
¢ is a Z-linear combination of {x" | x € Irr(B)}.

COROLLARY 2.9. If Irr(B) = {x} then IBr(B) = {x°}.

This is a phenomenon that can only happen in blocks with a unique Brauer
character.

PrROBLEM 2.10. Let B € BI(G) with [(B) > 1. Then there is x € Irr(B) with
X ¢ IBr(B).

2.3. The primitive central idempotents of F'G

We devote this last section to connecting the module-theoretic point of view of
blocks to our character-theoretic one. Let B € BI(G) and recall that we write

IB = fIrr(B) = Z €x-
x€lrr(B)
Since fp € Z(SG) we may apply the * homomorphism to obtain an element of
ep = (fB)* € Z(FG)
Since 1 = 3 cpy(q) €x it follows that 1 = > p p)) ep (notice that one is the
identity in C and the other one in F).

Recall that the Jacobson radical J(A) of an F-algebra A is the intersection of
all maximal right ideals of A.

THEOREM 2.11. The set of all primitive idempotents of Z(FG) is {eg | B €
BI(G)}, {\p | B € BI(G)} is the set of all algebra homomorphisms Z(FG) — F
and Ag(ep’) = dppr. Furthermore

JZ(FG) = () ker(Ap).
BeBI(G)

Since the ep’s are primitive central idempotents, it follows that F'Gep is an
indecomposable two-sided ideal of F'G (so it can not be written as a direct sum
of proper two-sided ideals). Further, using that 1 = )] BeBI(G) €B We also get

FG = @ FGeg.
BeBI(G)

Many authors write B = F'Geg. The element ep is the identity in F'Gep.

THEOREM 2.12. Let B € BI(G).

(i) Let x € Irr(G) be afforded by the CG-module V. Then x € Irr(B) if and
only if Vfg = V. Otherwise, V fg = 0.
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16 2.3. The primitive central idempotents of FG

(ii) Let ¢ € IBr(G) be afforded by the FG-module V. Then ¢ € IBr(B) if
and only if Vep = V. Otherwise Vep = 0.

In summation, we have a decomposition FG = @ B and to decide whether
¢ € Irr(G) U IBr(G) belongs to B we check that Ay (eg) # 0.
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LECTURE 3

Defect groups

Let € G. We denote by §(Clg(z)) = {DY | D € Syl,(Cg(z)),g9 € G}, and
these are called the defect groups of the conjugacy class €lg(z). If Q, P are
p-subgroups of G, we write QQ S P if () is contained in a G-conjugate of P.

3.1. The Min—Max theorem

Recall from the previous chapter that if B € BI(G) then we denoted fp =
erlrr( p) €x and that ep = (fB)* is the primitive central idempotent generating
the block B.

Recall that we wrote

fe=>. fo(@a(x)h)elg(x)" e Z(CA).
xeG/~

Similarly, we may write
ep= Y. ap(Clax))e(x)t € Z(FG)
zeG/~

where ap(Clg(z)") = fp(€lg(z)™)* (recall that these coefficients lie in S by
Proposition 2.5).

We know that if B, B’ € BI(G) then Ag(ep/) = dpp. Applying this to the
previous equality we get that there are some x € G/ ~ such that

aB(Qilg(x)+)/\B(€lg(x)+) # 0.

A class Clg(z) satisfying the above condition is known as a defect class for B.

THEOREM 3.1. Let B € BI(G) and z,y € G. If
ap(Cla(z) )Ap(Cla(z)™) # 0 # ap(Cla(y) )As(Cla(y) ")
then 0(Clg(x)) = §(Clg(y)).

DEFINITION 3.2. The defect groups of a block B are the defect groups of a
defect class.

We denote by 0(B) the set of defect groups of B. We write BI(G|D) for the set
of blocks of G with defect group D.

17



18 3.2. Numerical defect and height zero characters

THEOREM 3.3 (Min-Max). Let B € BI(G), Dp € 6(B), g € G and D, €
d(Clg(g)). The following hold.

o If A\p(Clg(g)T) # 0 then Dp ¢ D,.

e Ifap(€lg(g9)™) # 0 then Dy ¢ Dp.
This approach might seem a bit weird and in fact the result is somewhat circular.
Defect groups are usually defined in a different way, but such that the Min—Max

theorem applies. This ends up proving that the defect groups are well defined
by obtaining Theorem 3.1 as a corollary of the Min—-Max theorem.

3.2. Numerical defect and height zero characters

Write |G, = p*. We define the numerical defect of a block B € Bl(G) to be
the nonnegative integer d(B) such that

pt—d(B) — min{x(1), | x € Irr(B)}.
It follows that if |G|, = p* then for every x € Irr(G) we may write
X(l)p _ pa—d(B)-i-hX

for some nonnegative integer h,, called the height of x. The characters x €
Irr(B) such that d(B) = x(1), (i.e., hy = 0) are called height zero characters.
We denote by Irrg(B) the set of height zero characters of B.

Our next goal is to prove the following
THEOREM 3.4. Let B € BI(G) and D € §(B). Then |D| = p(B),
We need some previous results, which we will not prove.

PROPOSITION 3.5. If ¢ € IBr(B) then ¢ is a Z-linear combination of {x° | x €
Irr(B)}.

PROOF. See [Nav98, Corollary 2.16 and Lemma 3.16]. O

If x € Irr(G) it is well known x(1) divides |G|, however this is not true for Brauer
characters (it is not even true that ¢(1), divides |G|,).

PROBLEM 3.6. Prove that p®~4B) = min{p(1), | ¢ € IBr(B)}.

Now, a brief digression to introduce the so-called p-adic valuation v. If n € Z\{0}
with |n|, = p® then we write v(n) = a. Notice that v(nm) = v(n) + v(m). We
extend naturally v : Q* — Z by v(p/q) = v(p) — v(q) and this still satisfies
that v(zy) = v(x) + v(y) for z,y € Q*. We take the convention that v(0) = co.
With the p-adic valuation one can define an absolute value which in turn leads
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3. Defect groups 19

to the definition of the p-adic completion of Q. Notice that if x € Irr(B) then
v(x(1)) = v(IG]) — d(B) + hy.

We have to define yet another set, in this case a maximal ideal of S. Indeed, we
write

P:={r/s|reM,se R\M} =ker(*: S > F).

The following is our necessary result on valuations.

LEMMA 3.7. The following hold.
() SAQ={gcQ|w(g) >0},
(i) PnQ={geQ| g >0},
(iii) {g€ Q| v(q) =0} is the set of units of the ring S n Q.

PROOF. See [Nav98, Lemma 3.21]. O

Before the proof of our current goal, we come up with a way to compute

ap(Clg(x)*) which will be essential. We have defined ep = (fp)* where fp =
erhr(B) ey- Recall that by setting A = B we obtained in Section 2.1.2 a the
decomposition fp = 3 .cq/ fB(Cla(z)")Ee(z)*. Since fp(€lg(z)™) € S by
Proposition 2.5, we have that ap(€Clg(z)") = fp(€lg(z)*)*. By the same re-
sult, if z € G\G" we obtain that ag(€lg(z)*) = 0 (this shows that defect classes
must be formed by p-regular elements).

Therefore we focus on obtaining said formula for p-regular elements. By using
Proposition 2.3 and the formula before Proposition 2.5, if 2 € G°, we obtain
*

@) = [ X el
p€elBr(B)

Notice that q>|%g|1) € S because |G|, divides ®,(1) by Corollary 1.13. Since

o(z71) € R and * is a ring homomorphism, we obtain

(3.2.1) ap(Cla(z)™) = )] (‘I)ré'l)) oz h)*,

p€elBr(B)

PROOF OF THEOREM 3.4 Let a = v(|G|) and write |D| = p/. Our goal is
to show f = d(B). Let x € G be such that €lz(z) be a defect class for B.
We have that D € 6(€lg(z)), so DY € Syl,(Cg(x)) for some g € G. Since
|G : Cg(x)| = |€lg(z)| we obtain

p* = €l (2)]p
or in other words, a — f = v(|€lg(z)|).
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20 3.2. Numerical defect and height zero characters

Using that €lg(z) is a defect class for B we have
)\B(Q:[0($)+) #0

so if x € Irr(B) we have
(e,
x(1)
which means that
X(z)|€Clg ()]

e S\P.
x(1) '
Recall that x(z) € R, so if
|Cle(z)]
e P
x(1)

then, using that P is an ideal of S, we have

x(2)|Clg ()]

O P

S . €l (z . ¢l (x
which is false. This forces %))‘ ¢ P so, by Lemma 3.7, v (%) < 0.

Therefore v(|€lg(z)|) = a — f <v(x(1)) = a —d(B) + h,. By taking some x of
height zero we obtain that d(B) < f.

Now since €lg(x) is a defect class for B, then we also have ap(€lg(x)*) # 0. By
using the expression from 3.2.1, we obtain that

O

©€IBr(B)

so there is some ¢ € IBr(B) with ¢(z~!) ¢ P (because * vanishes in P). Since
¢ is a linear combination of {x° | x € Irr(B)} it follows that some x € Irr(B)
satisfies x(x71) ¢ P. Since |€Clg(z)| = |€Clg(z7)| we have

x(z H[Clg(z1)] _ X(@)|Clg(z1)| — o (Cle@) ) e R

x(1) x(1)
and P is an ideal of S, it follows that ‘Q)[‘éa” ¢ P, so we conclude that

vuu»—www@m=v(¢ﬁ2,)<o

by Lemma 3.7. Thus v(x(1)) = a —d(B) + hy < a — f = v(|€Clg(z)|) so
f <d(B) — h, and then f < d(B), as desired. O
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3. Defect groups 21

3.3. O,(G) is back

Recall that an element x of some F-algebra A is called nilpotent if there is some
n € N such that 2" = 0. Further, by [Nav98, Theorem 1.8], the Jacobson
radical J(A) is the unique maximal nilpotent right ideal of A.

LEMMA 3.8. Let € G and assume that Clg(z) N Cq(0,(G)) = &. Then
Clg(z)T € J(Z(FQ)). In particular, Clg(z)T is nilpotent.

ProOOF. It suffices to check that €lg(z)T € J(Z(FG)). By Theorem 2.11, we
should check that €lg(z)" lies in the kernel of Ap for all B € BI(G) (or equiv-
alently, in the kernel of A, for any ¢ € IBr(G). Let X be an irreducible F-
representation of G afforing . By the definition of A,, we want to prove that
X(Clg(x)™) = 0.

Write P = O,(G). We have that P acts by conjugation on €lg(x). Let Q =
{z¥ | y € P} < Clg(x) (that is, the P-orbit of = under this action). If y € P then
x¥ = zx~ly lzy € P, that is, every P-conjugate of z is contained in xP. Now,
we know that P < ker(X), so X(xt) = X(x) for all t € P, so X is constant on
2P, and by the previous argument, it is constant on 2. Since || is divisible by
p (because Clg(z) N Cq(0,(G)) = &), it follows that

>, X(xo) = [Q]X(z) =0

aZoEQ
(because F' has characteristic p). If Qi,...,Q; is the set of P-orbits on €lg(x)
with representatives x1,...,x:, then by applying the previous argument to the
x;’s we get

X)) = Y] (2 X<z>> = [l () = 0,

i=1 \zeQ i=1
as desired. O

COROLLARY 3.9. Let B € BI(G). Then O,(G) is contained in every defect group
of B.

PROOF. Let z € G be such that €lg(z) is a defect class for B. Since Ag(€lg(x)™T)
by Lemma 3.8 we have that Clg(z) N Cgq(O0,(G)) # &. Now O,(G) < G so
Cc(0,(G)) < G which means that €lg(z) = Cg(0,(G)), so O,(G) < Ca(x).
Thus if we take D € Syl,(Cg(z)) or any G-conjugate, we obtain O,(G) < D. [0

We will not prove this, but there is a theorem of J. A. Green that states that if
D is a defect group of some block of G contained in a Sylow p-subgroup P of G,
then there is z € G° such that D = P* n P.
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LECTURE 4

Brauer’s first main theorem

Our new goal is proving the existence of a canonical bijection
BI(G|D) — BING(D)|D)

for a given defect group D. This is known as Brauer’s first main theorem.

4.1. The Brauer map

Let P be a p-subgroup of G, and let Cg(P) € H < Ng(P). The Brauer map is
defined by

Brp : Z(FG) — Z(FH)
Co@)— >y

ye€lg(z)nCq(P)
where we set Brp(€lg(xz)t) = 0 if €lg(z) n Co(P) = &.

THEOREM 4.1. The Brauer map is an algebra homomorphism.

SKETCH OF PROOF. The map Brp is clearly F-linear so we only need to show
that for z,y € G/ ~ we have

Brp(€lg(z)")Brp(Clg(y)t) = Brp(Clg(x) " €la(y) ™).

For this, we write

Cla(2) Cla(y)™ = )] awy:Clg(2)"
2eG/~

and it turns out that the coefficient

azy> = |{(z0,70) € Cla(x) x Cla(y) | zoyo = 2}|*.
Write C' = Cg(P). Now on one hand if ¢ € C' then the coefficient of ¢ in

Brp(Cla(z) " Cla(y)") = | aay:Brp(Cla(2)")
2eG/~

is azye (choosing the appropiate G/ ~ such that c € G/ ~ ). On the other hand,
the coefficient of ¢ in Brp(€lg(z)T)Brp(€lg(y)h) is

baye = [{(w0, 40) € (Clg(x) N C) x (Ca(y) N C) | zoyo = ¢}|*
23



24 4.1. The Brauer map

The final trick is that P acts by conjugation on

{(z0,90) € Cg(z) x Cg(y) | zoyo = 2}
with fixed points

{(z0,y0) € (Clg(z) N C) x (Cla(y) N C) | moyo = ¢}
and since P is a p-group, this implies that these two sets have sizes congruent

modulo p, S0 azy. = byy.. O

Remarkably, the previous proof heavily relies on our field having characteristic
Pp.

LEMMA 4.2. Let P < G be a p-subgroup. For x € G/ ~ choose some D, €
d(€Clg(x)). Then

ker(Brp) = Y| Felg(z)" (= <Cla(z)" | P £¢ Da)r)
P&aDq

(the RHS denotes the linear combinations of the class sums Clg(z)* with P £¢
D,).

PRrOOF. We claim that Brp(€lg(z)1) # 0 if and only if P ¢ D,

Indeed, Brp(€lg(x)*) # 0 if and only if €lg(z) n Ce(P) # &, which happens
if and only if some G-conjugate x! of x centralizes P. This happens if and only
if P < Cg(a') and then P < Dy € Syl,(Cg(z')) and this happens if and only if
P cqg D,

Now if z € Z(FG) satisfies Brp(z) and we write
z = 2 2:Clg(x) "
zeG/~

then notice that z, = 0 if Brp(€lg(z)*) # 0 because the sets €lg(z) n C are
disjoint. By the first paragraph, if Brp(z) = 0 then z, = 0 whenever P S D,.
Conversely, any linear combination

z= Z 2:Clg(x)"

PED,
satisfies Brp(2) = Xpep, 2:Bre(€la(z)™) = 0. .

THEOREM 4.3. Let B € BI(G|D) and let P < G be a p-subgroup. Then Brp(ep) #
0 if and only if P =g D.

PROOF. Write (as usual)

ep= Y. ap(Clax)’)eg(x)?.
zeG/~
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4. Brauer’s first main theorem 25

By Lemma 4.2, Brp(eg) # 0 if and only if there is some z € Clg(z)" with
P cg D, € §(Clg(x)) and with ap(€lg(z)T) # 0.

First suppose that P g D. By choosing a defect class €lg(z) of B, we have
ap(Clg(x)t) # 0 and P ¢ D € §(€Clg(x)). By the previous paragraph this
implies Brp(ep) # 0.

Conversely, if there is some class Clg(z) # 0, P Sg Dy € §(€lg(z)) and with

ap(Clg(x)™) # 0 then by the Min—-Max theorem we have D, S D and therefore
P cg D, ¢ D and we are done. [l

We have found another definition of the defect groups: the maximal p-subgroup
D of G up to G-conjugation with Brp(ep) # 0.

4.2. Block induction

Let H < G and b € BI(H). We use the algebra homomorphism X, : Z(FH) — F
to define an F-linear map

N Z(FG) - F

Clg(z)t — N Z Yy
yellg(z)nH

It may happen that )\bG is in fact an algebra homomorphism. In that case, by
Theorem 2.11 we know that there is a unique b € BI(G) such that Ao = AS.
We say in this case that the induced block b% is defined.

There is more than one definition of induced block in the literature, but they
coincide in the important cases.

LEMMA 4.4. Let be BI(H) with H < G. Ifb% is defined then every defect group
of b is contained in a defect group of bC.

PROOF. Let €lg(x) be a defect class for b&, which implies that Ay (Clg(x)T) #
0. In particular

A Z y|#0.
ye€lg(z)nH
Therefore there is some Cly(z) < Clg(xz) N H with \y(€ly(z)) # 0. By the
Min-Max theorem we have D, g D, € 0(€ly(z)) where Dy € §(b). Now
D, = Cpu(z) € Cg(2), so there is D € Syl (Cg(z)) with D, = D. Now since
Clg(x) = Clg(z) is a defect class of B, then §(B) contains D and we have
Dy ¢ D, as desired. O

Next is the big theorem.

Universita degli Studi di Firenze J. Miquel Martinez



26 4.2. Block induction

THEOREM 4.5. Let P < G be a p-subgroup, and let H < G be such that
PCqg(P) € H € Ng(P). Ifbe BI(H) then b% is defined and N\’ = A, o Brp.
Further, if B € BI(G) then B = b% for some block b € BI(H) if and only if
PcDed(B).

PROOF. Since Brp and ), are algebra homomorphisms, to prove that b® is
defined (that is, )\bG is an algebra homomorphism) it suffices to show that )\g; =
)‘b ¢) BI‘p.

Let C = Cg(P). If x € G then we wish to prove

Ab Yoooul=N >y

ye€lg(z)nH yel€lg(z)nC

Since C'<0 H then €lg(x) n C is a union of H-conjugacy classes, so we can split
the LHS as follows

N>yt > y

yellg(z)nC ye(Clg(z)nH)\(Clg(z)nC)

and it suffices to show that the rightmost term vanishes. Now let z € (Clg(z) N
H)\(Clg(x)nC). We have that €l (2)nC = &. Now P<H so P < O,(H), and
therefore Cy(O,(H)) € Cy(P) < C. This implies that Cy(O,(H)) nCly(2) =
. By Lemma 3.8, €l (2)7 lies in the kernel of of A\, so A\p(€ly(2)") = 0. The
desired equality now follows since the rightmost term of the above sum vanishes,
and the first part is proved.

The second part is a double implication so we start with the easy one. If )¢ = B
for some b € BI(H), then we now from Lemma 4.4 that if D, € §(b) then
Dy, < Ded(B). Now P< H so P < O,(H) < Dy, and it follows that P < D,
as desired. Conversely, if P € D € 6(B) then from Theorem 4.3 we have that
Brp(ep) # 0. Since Brp is an algebra homomorphism, Br(eg) € Z(FH) must
be an idempotent, and therefore it is a sum of (different) primitive idempotents,
so Br(eg) = ep, + - - + ep, for some blocks b; € BI(H), by Theorem 2.11. From
the first part, if b is one of the b;’s, b is defined and XS (ep) = A\y(Brp(ep)) =
> Xo(ep;) = 1 s0 B = b% by Theorem 2.11. O

From the above argument we get the following conclusion.

COROLLARY 4.6. Let G, P, H be as before. Then
Brp(ep) = Z €p-

bG=B

The following is treated by some experts as folklore, but it is a (nontrivial)
application of the previous result.
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4. Brauer’s first main theorem 27

PROBLEM 4.7. Let G be a finite group. If there is some p-subgroup P <1 G with
Cqa(P) < P then G has a unique block.

As a consequence, if G is p-solvable and O,/ (G) = 1 then G has a unique block
(since Hall-Higman’s Lemma 1.2.3 implies that Cg(0,(G)) < O,(G)).

PROBLEM 4.8. Let P <1 G be a p-subgroup and B € BI(G|P). Then

ep = Z ap(Clg(z)")Clg(z)*.
Pes(Cl ()

4.3. The first main theorem

The following is a key result in group theory, for a proof see [Nav98, Theorem
4.16]. In a sense it is a version of the first main theorem but for conjugacy
classes. We denote by CI(G|D) the set of conjugay classes of G with defect
group D.

THEOREM 4.9. Let D < G be a p-subgroup. The map €lg(x) — Clg(x) nCq(D)

is a bijection C1(G|D) — Cl(Ng(D)|D).

Notice that if €lg(x) is a conjugacy class with defect group D, then
Brp(Clg(z)t) = (Clg(x) n Cg(D))™ .

We are finally ready to prove Brauer’s first main theorem. Recall that BI(G|D)
denotes the (possibly empty) set of blocks of G with defect group D.

THEOREM 4.10 (Brauer’s first main). The map
BI(N¢(D)|D) — BI(G|D)
b b

s a bijection. Its inverse is given by applying Brp to the block idempotents.

PROOF. Denote by N = Ng(D) and C = Cg(D). By Theorem 4.5 we know
that if b € BI(N|D) then b“ is defined and Ao = Ay’ = Ay o Brp.

Claim 1: bC has defect group D (so the map is well defined).

Let €lx(y) be a defect class for b. Since b has defect group D then so does
Cly(y) and therefore €l (y) has defect group D and Cly(y) = Clg(y) n C by
Theorem 4.9. Now

Ay (Cla(y) ™) = M(Brp(€la(y) ™)) = M((€la(y) 0 C)7) = Xp(€ln(y) ") # 0

so by the Min-Max theorem we have that a defect group of b is contained in
D. By Lemma 4.4, D is contained in some defect group of b¢ and this proves
the claim.
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28 4.3. The first main theorem

Claim 2: The map b — b° is surjective.

Let B € BI(G|D). By Theorem 4.5 there is some b € BI(N) with ¢ = B. We
need to prove that b has defect group D. Now since D <1 N then D is contained
in the defect groups of b. By Lemma 4.4, the defect groups of b are contained
in the defect groups of b. This shows that b has defect group D, as desired.

Claim 3: The map b — b¥ is injective.
Let b,c € BI(N|D) and assume b% = ¢“. This implies that \yc = A\ o Brp =
Ae © Brp = A.e by Theorem 4.5. If €lg(z) has defect group D then

M((Clg(x) n YY) = Ae((Clg(z) n C)T)

so by Theorem 4.9, )\, and A, coincide in every conjugacy class of N with defect
group D. Now using Problem 4.8

L= M(e) = Y ap(@y(m))n(Cv)") =
Des(€ln(y))

= Z ap(CIN (1) ) A(Cln (1)) = Aeles)
Des(€ly (y))
which shows e, = e. so b = c. O

As a consequence of the first main theorem, defect groups are p-radical (we say
a p-subgroup P is p-radical if P = O,(Ng(P))).

PROBLEM 4.11. Let D € §(B) for some block B. Prove that O,(Ng(D)) = D.
(Hint: Op(Q) is contained in all the defect groups!).
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LECTURE 5

The principal block and Brauer’s third main theorem

The principal block is the unique block By(G) that contains the trivial character
1. Its defect groups are the Sylow p-subgroups. In some sense, it is the most
important block of a group in terms of the structural information it contains (if
time permits, we might devote a session at the end of the course to prove things
about principal blocks).

Assume H < G and b € BI(H) is such that b” is defined and b = By(G).
Brauer’s third main theorem shows that this forces b = By(H).

Brauer’s proof [Bra64] (which appeared in the first volume of the Journal of
Algebra) relies on results about block coverings and assumes that Cg(P) € H
for some p-subgroup P < G, so we follow the proof from [Nav98, Chapter 6],
which is a bit more convoluted but also gives interesting insights on induced
blocks. Since we are taking two weeks off after this session I believe this is the
more natural approach (instead of introducing stuff about normal subgroups and
coverings and then taking a break). I still think that it is worth reading Brauer’s
paper, which has aged beautifully.

5.1. Preliminary results
In this section, for any y € Char(G), we write
wy 1 Z(CG) - C

€l (@)[x(x)
x(1)

Notice that wy (€lg(x)") may not be in R if x is not irreducible. Observe that

Clg(z)*

X(Dwy (€l (2)?) = [Clg(a)[x(x) = Y, [€la(@)|[x ¥](z) =

Yelrr(G)

= Y vl e (@)

Yelrr(G)

so X(Dwy = 2 yerr(c) [X: ¥]¥(1)wy. We shall use this fact throughout this sec-
tion withour further mention.
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If H < G and any field K and any K-linear map A : Z(KH) — K we denote by
¢ Z(KG) — K the K-linear map defined by

A(Clg(x) ") = A(€lg(z) N H)™).
Notice that if b € BI(H) then the induced map A{ is just (Ap)€.

LEMMA 5.1. Let H < G and £ € Irr(H). Then w? = wea.

Proor. We have

EMwee = D0 [€9, 9] (1)wy

Yelrr(G)
so we need to show that the RHS equals £%(1)(w¢).

Let « € G and notice that if €lg(x) N H is nonempty then we may write

t
Cla(x) m H = | ] €ty (as)
=1
as a disjoint union. With this expression, we may rewrite the induction formula

(I recommend trying to prove this as a problem, but it can be seen in [Isa06, p.
64]). Thus

Y (o)) = Y (68 plun) T
Yelrr(G) welrr( ) w( )
= [Clg(2)|¢% (2) = Cl rZ‘CH ) \2|CH o

‘G@mf; letatele(z) ‘If z;) ||fl|‘2\¢m )€ (i) = G(l)de@lH(%)*F

i=1
=§G( )%((Q?[G(w) N H)") = €9 (1)(we)(Cla(2) )
where we have used that £9(1) = |G : H|£(1). O

COROLLARY 5.2. If H < G and & € Irr(H) then wea(€lg(z)™) € R. Therefore,
if 2€ Z(SG), wea(2) € S.

PROOF. By the previous result (and inheriting the notation in the proof)

wga(C[G(aj)Jr) = we((Clg(z) n H)Y) = Z we (€l () ™)
i=1

which is an algebraic integer. The second part follows by linearity. O
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5. The principal block and Brauer’s third main theorem 31

COROLLARY 5.3. Let H < G and & € Irr(H). If ¢ € Trr(G) then bI(€)C is
defined and contains £©.

PROOF. Since £¢ is irreducible
wea : 4(CG) - C

is an algebra homomorphism. Further

A (€la(2)™) = M((Cla(z) n H)Y) = we((@la(x) 0 H)')* = wf (Clg(2) ") =
wee (Cla(z)™)* = Aea (Clg(z)™)

which implies Af is an algebra homomorphism Z(FG) — F. Tt follows that b%
is defined and since Ay’ = \ye = A¢a, then b contains £°. O

If B € BI(G) and x € Char(G) then we denote by

xs= Y. Dovlv

Yelrr(B)

so that x = > pepy(e) XB- Recall that P = ker(*: S — F).

LEMMA 54. Let H < G and consider be BI(H), £ € Irr(b). Let B € BI(G).

(i) We have

|€le(2)|(69) ()

£O(1) eS.

(ii) If b% is defined then
(a) if b% = B and x € Irr(B) then

Cle(@)|(€9)B(@) _ |Cla(@)x(z)
£€4(1) x(1)

mod P

(b) if b% # B then

|€le()|(€9) B ()
£9(1)

eP.

PRrOOF. Recall that we wrote fp = erhr(B) ey. The key to this proof is that

€l (2)[(£) (x)
£9(1)
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32 5.1. Preliminary results

Indeed, using that w, is an algebra homomorphism if x is irreducible, and that
wy(fB) = dbi(y),B We obtain

F(Mwea(fpela(@)) = Y [69 xIx(Dwy (fpela(x)t) =

x€lrr(G)

= D [y (@la@) ) = Y [€9 x]ICla(@)x(z) =

x€lrr(B) x€lrr(B)
= |€lg(2)|(69) ()

and the claim follows. Now fp has coefficients in &, and therefore so does
fBCla(z)™. By Corollary 5.2, wee (f€lg(2)*) € S, and (i) is proved.

Assume b% is defined. We have
A5 (€l (2)7) = Mo((lg(z) m H)Y) = Ae((Clg (@) 0 H)T) =
= we((Clg(z) M H))* = wee (Cla(z)*)*
so if z € Z(SG) then \{ (z*) = wea(2)*. By the proof of the first part we have

|¢la<x>|<5G>B<x>)*
£9(1) '

Mo (e8Cle(2)™) = Mo (f586(@)™)*) = wee (fa€lo() ) = (

If b% = B then \yc(eg) = 1, so if we take y € Irr(B) we have
€l (@) Ix(@)\* _ +y o _ (18e@)IE9)s)\"
( X(l) = )\b(Q:[(;(m') ) = )\b<€BQ:[G(«73) ) = 50(1) .
and (ii)(a) follows.
If b% # B then \ye(eg) = 0 and therefore

T G z ®
0 = A (e)A§ (Clg(z)") = (WG( E)G!((sl))g( )>

and (ii)(b) follows. O
We obtain an interesting and very useful consequence.

PROBLEM 5.5. Assume H < G, b € BI(H) and suppose b° is defined. Let
¢ € Irr(b) and B € BI(G). Prove that

(1) v((€%)B(1) > v(E9(1)) if B # b7,
(it) »((€9)B(1) = v(€9(1)) if B =7,
Deduce that there is some x € Irr(bF) such that [x, %] # 0.

(Hint: Apply the previous result to z = 1 and use the result on valuations.)
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5.2. A generalized character

If y € Char(G) we define X(z) = |G|p,x(z) if g € G and X(z) = 0 otherwise. We
will not prove anything here, but state the main result that we need.

PROPOSITION 5.6. Let x € Irr(B) for B € Bl

—~

G). Then

~—

(i) X is a Z-linear combination of Irr(B),

(i) x has height zero if and only if v([X,&]) = v(§(1)) for all § € Trr(B)
(equivalently, [gx(f)] e S\P).

PROOF. See [Nav98, Lemma 3.20 and Theorem 3.24]. O

We can use this generalized character to test whether a (height zero) character
belongs to an induced block.

PROPOSITION 5.7. Let H < G and assume b® is defined for some b € BI(H).
Let x € Irr(G) and ¢ € Irr(b).
(i) If x ¢ Irr(b%) then
[X&. Y]
P(1)

(ii) if x € Irr(b®) has height zero then

[Xa, ¥]
¥(1)

eP,

% 0 mod P.

PROOF. First notice that if x € H° then
Xa(z) = X(z) = |Glpx(z)
and
Xu(x) = [H|px(z)
and if both ¥z and g vanish in H\H". This shows that

~ .
XH = 7~ 77 XH:
|G : HIp

Secondly, recall that by Proposition 5.6, X is a Z-linear combination of Irr(B)
and, in particular, for any 1 € Char(G) we have

[557 77] = [ia 773]

We have
[X#, ¢ eyl Rl R @%)s]

P(1) B |G = Hlpp(1) - |G = Hlpp(1) - |G = Hlpp(1)
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34 5.3. The proof

and using that ¢¥%(1) = |G : H|¢(1) we can write
(X 95l _ |G HIX, (v)5] _ |G : Hly[X, (¥9)5]
(1)

G- Hlw(l) |G HpwC() P
— w €T G x % fL‘il
= SO0 xe;/f%( @D p@RE™).

Now, ¥ vanishes in G\G® and X(g) = |G|,x(g) otherwise. We can rewrite the
last expression as

G H|p’|G|p G -1

Er e S |ela(@)|(69) pla)x (@) =

GE)IG] GE/ ¢ B
1 €le(@)|(9)p(@)
L& eem )

Now, if B # b then
€l (2) (%) p()
PE(1)

by Lemma 5.4 and we conclude that D?il’lf] = 0 mod P.

=0mod P

Otherwise, by the same result,

€l (2)|(¥9)p(x) _ |Cla()|x(z)
oy P
Now, since ¥ vanishes outside G,
[Xn, Y] 1 Cla(@)|x(@) 1
- 6D (o) =
¢(1) |H|p’ :EGGO/~ X(l)
1
= Cla(x)|X(x)x(z™1) =
G| - Gly [X:x]
=———[|¥,x| = # 0 mod P
e, N ], )
by Proposition 5.6. [l

5.3. The proof

We prove a more general result, due to Okuyama.

THEOREM 5.8 (Okuyama). Let H < G, x € Irr(G) and assume xg € Irr(H).
Assume further that hy, = 0 = hy,, in their respective blocks. If ¢ € BI(H) is
such that ¢ is defined, then ¢ = bl(xg) if and only if €& = bl(x).
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PROOF. If ¢ = bl(xp) then bl(x )¢ is defined, and we need to show bl(x )" =
bl(x). Now xp has height zero, so by Proposition 5.6,
[)Z;Iv XH]
xu(1)
and since x has height zero, Proposition 5.7 implies x € bl(xz)%, as desired.

# 0 mod P

If ¢ = bl(x) then we need e = bl(xz). Let 1) € Irr(c). Since x € ¢“ has height
zero, we have

[XH, %] # 0.
Now, by Proposition 5.6, x g only involves characters in bl(x ), and we conclude
that £ € bl(xx) so ¢ = bl(xn). O

COROLLARY 5.9 (Brauer’s third main). Let H < G and b € BI(H). If b is
defined and b = By(G) then b = By(H).

Proor. Apply Okuyama’s theorem to x = 1¢. O
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LECTURE 6

Clifford theory for Brauer characters

A lot of the Clifford theory of Brauer characters mimicks the Clifford theory of
ordinary characters. The main challenges in the proofs arise from the fact that
Frobenius’ reciprocity is no longer true and the absence of a scalar product. We
will not prove many results that essentially just mimick the techniques of the
complex situation with the appropiate adjustments. Every unproven theorem
(and the proven ones as well) can be found in [Nav98, Chapter 8].

6.1. Induction of Brauer characters and Clifford’s theorem

Let a € cf(H®) where H € G. We define o € cf(G?) by the formula

|H| > a(gzg

geG

where a(y) = (y if y € H and a(y) = 0 otherwise. Note that if 8 € cf(H)
30

e )
then (£%)° = G,

THEOREM 6.1 (Brauer-Nesbitt). If a is a Brauer character of H < G then o
is a Brauer character of G.

In the above situation, we denote by IBr(G|a) the set of characters x € IBr(G)
such that xg contains o. Warning! This does not imply (I think) that o
contains y (we will see below that it does if H < G).

One of the main obstacles of proving the above theorem (and many others in
this chapter) is the fact that there is no scalar product to help us decompose
Brauer characters as a linear combination of irreducible Brauer characters. In
fact, for complex characters, the previous proof is just a direct consequence of
the Frobenius reciprocity, which we lack in this context. The closest analogue
to the scalar product that helps us in this situation is the following. If x =

Z,@Br(g) ayp and @ = ZMGIBr(G) bup then we define

I(x,p) = Z aubu
uelBr(QG)
and in particular I(x, x) = 1 if and only if x € IBr(G).

37



38 6.1. Induction of Brauer characters and Clifford’s theorem

If N< G, 0 €IBr(N) and g € G then we define by 69 the character defined by
69(n) = 6(gng™")
for n € N°. This defines an action of G on IBr(N) by conjugation.

It turns out that the analogue Frobenius reciprocity is true if we assume the
subgroup is normal! In fact, Clifford’s theorem also holds for Brauer characters.

THEOREM 6.2 (Clifford). Let N < G, let v € IBr(G) and 6 € IBr(N). Then

(i) ¢ is a constituent of 0F with multiplicity e if and only if 0 is a constituent

of on
(ii) in this case
t
pN =€ Z 0;
i=1
where {01,...,0.} is the set of G-conjugates of 0 and e = I(xn,p) =

I(x, ¢%).

A key result is that if V' is a simple F'‘G-module and W is a F'N-submodule of
Vn then Viy = > e Wg. Most of the proof then follows the proof for complex

characters with the appropiate substitutions of the scalar product by our newly
defined 1.

If N< G and 6 € IBr(G) we denote by Gy the stabilizer of  in G (also called
the inertia subgroup of 6).

THEOREM 6.3 (Clifford correspondence). Let N < G and 6 € IBr(G). Then the
map

IBr(Gg|0) — IBr(G|6)
W
is a bijection. Moreover if 1 € IBr(Gy|6) we have
()N, 0) = I(¢n,0) and I(¢%)g,,¢) = 1.

If we compare this to the case of complex characters then the last two conditions
might become more natural (recall that in the complex case (%) = 1+A where
A is a sum (or zero) of characters not lying over 6).

The following is perhaps surprising (it is to me).

PROPOSITION 6.4. Let N < G and 0 € IBr(N). If 7 € IBr(Gy|f) then (®,)¢ =
D

T
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6. Clifford theory for Brauer characters 39

6.2. Extendibility of Brauer characters

An extension of a character « € IBr(H) is a character x € IBr(G) with xg = «a.
When H < G there are some situations in which we can guarantee extendibility
(and then we have great control of the characters in IBr(G|a).

THEOREM 6.5 (Green). Let N < G and assume G/N is a p-group. Let 0 €
IBr(N). Then there is a unique ¢ € IBr(G|0) and on = d._, 0; with usual
notation. In particular, if 0 is G-invariant then pn = 6.

PRrOOF. We argue by induction on |G : N|.

First we claim that we may assume 6 is G-invariant. Indeed, if Gy < G then
by induction we have IBr(Gylf) contains a unique character, say . By the
Clifford correspondence we have that ¢“ is the unique character in IBr(G|6).
Furthermore, by induction ¥y = 6 so I(¢)n,0) = 1 by Clifford’s theorem and
again by the Clifford correspondence, I((1»%)y,0) = 1. The result follows now
by applying Clifford’s theorem again.

Therefore we assume Gy = G, so if ¢ € IBr(G|6) we have ¢n = efl. Notice that
N = G. By the induction formula,

(0°)n = |G : N|o
so for any n e N = G° we have
e0%(n) = |G : N|B(n) = |G : N|p(n)

which shows that ed® = |G : Nl|p so 0% is a multiple of ¢ by the linear in-
dependence of IBr(G) (and the uniqueness is proved). We need to show that
e=1.

If e > 1 then since ¢ = Mgp

all g e G° = N° we have

it follows that e is a p-power. In particular, for

p(9)* = €e"0(g)" = 0.
Now if x € G and & affords ¢ then recall that by Lemma 1.4 we have

trace(X (z)) = p(xy)*

so trace(X(x)) = 0 for all x € G. This contradicts the fact that trace functions of
irreducible representations are linearly independent, so we conclude e = 1. [

There is another classic situation in which extendibility can be guaranteed, but
its only known proof uses representations and is a bit annoying.

THEOREM 6.6. Let N < G and assume G/N is cyclic. If 6§ € IBr(N) is G-
imvariant then 0 extends to G.
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40 6.2. Extendibility of Brauer characters

In these (and the many other) situations where we have a character 6 from a
normal subgroup N that extends to GG, there is a perfect understanding of the
set IBr(G10).

THEOREM 6.7 (Gallagher correspondence). Let N< G and assume 0 extends to
0 € IBr(G). Then the map

IBr(G/N) — IBr(G|0)
B — B

is a bijection.

Another warning! As with ordinary characters, unless a canonical extension
can be found, there is no canonical description of IBr(G|0), i.e., our description
will depend on the extension chosen. For most applications this is not very
important. Notice also that if G/N is a p-group, then Green’s theorem and the
Gallagher correspondence coincide since 1g/y is the only Brauer character of
G/N.

Recall that in general if ¢ is an irreducible Brauer character of G, it is not even
true that (1) divides |G| (not even (1), divides |G|). An example can be
found in the sporadic McLaughlin group McL which has a 2-Brauer character ¢
with (1) = 22 but [McL|s = 27. This cannot happen whenever G is solvable.
In fact, more is true:

COROLLARY 6.8 (Swan). Let N < G and 0 € IBr(N). If G/N is solvable then
©(1)/0(1) divides |G : N| for all ¢ € IBr(G|0).

PROOF. Argue by induction on |G : N|.

First we claim that we may assume ¢ is G-invariant. Again, if x € IBr(G|0)
and Gy < G then by induction the Clifford correspondent v of x over 8 satisfies
¥(1)/0(1) | |Gy : N|. Since 9¢ = x then

x(1)/6(1) = |G : Goly(1)/6(1)
divides |G : N| = |G : Gy||Gp : N|.
Now if N < M < G and again let x € IBr(G|6) and let ¢ € IBr(G|6) be any
constituent of y 7. By induction, ¥(1)/6(1) | |M : N| and x € IBr(G|y) satisfies

x(1)/(1) | |G : M|. We conclude that x(1)/0(1) divides |G : N|. Therefore we
may assume G/N has no proper normal subgroups.

Since G/N is solvable and simple, it is cyclic. By Theorem 6.6 6 extends to G
and by the Gallagher correspondence, every y € IBr(G|6) is an extension of 6.
Therefore x(1)/0(1) = 1 and we are done. O

The above result is just true for complex characters without any solvability
condition.
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6.3. On modular character triples

Character triples are one of the fundamental tools to work with Clifford theory.
The precise definition is a bit too technical to state here but we will try to give
some intuition and explain some of the results that one can obtained by applying
this theory.

A modular character triple is a triple (G, N, ) where 6 is a G-invariant Brauer
character of N <« G. It can happen that two finite groups have different Brauer
character theories, but that over a particular character of a normal subgroup the
same things happen. Of course, for this to be possible, the factor groups have
to be isomorphic.

We say that two modular character triples (G, N, 0), (H, M, \) are isomorphic if
there is a group isomorphism o : G/N — H /M and for any subgroup N < L < G
there is a map

71, : N[IBr(L|6)] — N[IBr(o(L)|\)]
that maps irreducible characters to irreducible characters bijectively and satsifies
many more compatibility properties (with conjugation, restriction, induction,
multiplication... etc). A particular condition is that if x € IBr(L|6) then

WD) 0

o(1) A1)
Also, 0 extends to a subgroup N < L < G if and only if A extends to the
corresponding subgroup o(L).

THEOREM 6.9. Any modular character triple (G, N,0) is isomorphic to a modu-
lar character triple (H, M, \) where M < Z(H) and X is linear and faithful. In
particular M has order not divisible by p.

Notice that the corresponding A is also an irreducible complex character of M.
Essentially, every G-invariant 6 € IBr(NN) corresponds to some element « €
H2(G/N, F*) (the second cohomology group), and we use this o to construct
a central extension of G that ends up yielding the above isomorphism. The
construction is quite technical but allows for very nice control of blocks, thanks
to results of Murai.

We do not need any of this though. Here are some results that can be obtained
as consequences of this isomorphism. In the following results we use that their
complex-character version is true.

PROPOSITION 6.10. Let N< G, 0 € IBr(N) and assume G/N is p-solvable. Then
for any x € IBr(G|6) we have x(1)/0(1) divides |G : N|.

PROOF. We argue by induction on |G : N|. As in the solvable version, we may
assume 6 is G-invariant. By Theorem 6.9, (G, N, @) is isomorphic to (H, M, \)
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where ) is a linear character and M is a p’-group. Notice that it suffices to prove
the result for (H, M, \).

Let M < U< H be a minimal normal subgroup. Since H/M =~ G/N is p-solvable,
U/M is either a p-group or a p’-group. If U/M is a p-group then we are done by
Theorem 6.5. If U/M is a p’-group then U is a p’-group and IBr(U) = Irr(U).
The result now follows by using the complex character version. O

Using similar ideas it is possible to also prove the following.

PROPOSITION 6.11. Let (G, N,0) be a modular character triple. Then 6 extends
to G if and only if it extends to Q, where Q/N € Syl,(G/N), for every prime q
dividing |G : N|.

It is fundamental to argue by induction on |G : N| instead of |G| when working
with character triple isomorphisms. There is no control over the order of the
group obtained in Theorem 6.9, but we do know that the index of the corre-
sponding normal subgroup is |G : N|.

Character triples (both ordinary and modular) have become a fundamental tool
in the study and reduction of the main conjectures that we face.
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LECTURE 7

Blocks and normal subgroups

For this chapter, if B € BI(G) then we write B = Irr(B) u IBr(B).

7.1. Block covering

7.1.1. Actions by automorphisms. The group Aut(G) acts on cf(G) and
cf(G°) by

() = wl(g” ).

This action restricts to the subsets of ordinary (and Brauer) characters, and

also restricts to Irr(G) and IBr(G). Further, (¢7)° = (¢°)? for all ¢ € cf(G)

and it follows that d,, = dyoyo. By using the linking graph it follows that

B? = {1 | ¢ € B} is also a block of G, so Aut(G) also acts on Bl(G).

If Aisaring (say F,Cor S) then every o € Aut(G) also induces an automorphism
of the A-algebra AG, by

(Z ‘199)0 =, g’

geG geG
which maps Z(AG) to Z(AG). This action also satisfies €] = ey, and therefore
ff = fpe and e} = epo.
Now let B € BI(G) and o € Aut(G). Then Agoo~! is an algebra homomorphism
Z(FG) — F and
(s oo™h)(enr) = Ap((¢§)” ) = Ap(en) =1
SO Age = Ag o o1

PRrROBLEM 7.1. Let B € BI(G), D € 6(B) and o € Aut(G). Prove that D7 is a
defect group B®

7.1.2. Blocks of normal subgroups. Applying the previous discussion
to the action of G by conjugation on N <« G we obtain a G-action on BI(N).
Notice that if b € BI(N) and g € G then

Irr(b9) = {9 | ¢ € Irr(b)} and IBr(b%) = {9 | p € Irr(b)}.

We denote by G the stabilizer of b in G' (notice that Gy contains Gy, for all
Y € B).
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PROPOSITION 7.2. Let {b1,...,b:} < BI(N) be a G-orbit. Then the idempotent
25:1 fo, lies in Z(SG).

PROOF. We have that ), f;, € SN < SG. Now let g € G. Then

ONSIEDWIEDW

s0 X fv, € Z(SG). O

Since Zle fp, is an idempotent in Z(SG) < Z(CGQG) there is some subset A :=
{X1,---yxn} € Irr(G) with

n t
fa=Y ex; = D fo € Z(SG).
j=1 i=1

By Theorem 2.6 we have that A must be a union of blocks, so there are
{Bi1,...,Bs} < BI(G) such that

s t
ifs, =) fo-
j=1 i=1

DEFINITION 7.3. In the situation above, we say that Bj covers (any) b;.

Write BI(G|b) for the set of blocks of G that cover b. If the b;’s above are the
G-conjugates of b then

BI(G|b) = {B,...,Bs).

PROBLEM 7.4. Let {b1,...,b:} be the G-orbit of b€ BI(N). Prove that
t
Z ep = Z €p, -
BeBI(G|b) i=1

We aim to characterize block coverings in terms of the characters in the block.

PROBLEM 7.5. Let N < G and let K be either F or C. Then {€lg(z)" | z € N}
is a basis of Z(KN) n Z(KQG).

PROPOSITION 7.6. Let N<1 G, let x € Irt(G) and 6 € Irt(N). Then x € Irr(G|0)
if and only if wy (Clg(2)T) = we(Clg(z)T) for every z € N.

PROOF. We observe first that wp(€lg(2)1) = wy(Clg(z)T) for all z € N if and
only if ¥ and 0 are G-conjugate. Indeed (€lg(x)*)9 = Clg(z)™ so

(
ws (Clg(2) ") = wps ((Clg(2)")?) = we(Clg(x) ")
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which proves the if direction. Conversely, assume that wyg and wy agree in
Z(CG)NZ(CN) (by Problem 7.5). If {61, ..,6:} are the G-conjugates of 6 then
arguing as in Proposition 7.2

t
> es, € Z(CG) N Z(CN)
i=1

so using that wy(e;) = dy,, we have that

o (Sen) = (Sen)

and again since wy (e;) = dy,, we have v is one of the 6;’s, as desired.

Now let £ € Irr(N) be under x and let {&1,...,&} be the set of G-conjugates of
¢. By Clifford’s theorem we have

t
XN =€) &.
i=1
If x € N then write (‘:[G( ) =11CINn(z;) as a disjoint union. Then
eté(1)we (Clg(z) ™) = e€(1 2% Clg(z)) = e£(1 ZZ% (Cly () =

- 6ZZ|¢[N x] |§z x] Z|€[N $] (Z@fz(x])> —

i

= Z |€[N zj)x(x5) = |¢[G(x)|x($) = x(Dwy(€lg(z)™)
J
and we are done because et£(1) = x(1). O
Recall that we denote B = Irr(B) u IBr(B).
THEOREM 7.7. Let b € BI(N) and B € BI(G). The following conditions are
equivalent.
(i) B covers b,

(ii) for all x € B, every irreducible constituent of xn lies in a G-conjugate

of b,
(iii) there is x € B such that xn has a constituent in b.
PROOF. We first prove the theorem for ordinary characters. It is clear that (ii)
implies (iii).
Write {b1,...,b:} for the G-conjugates of b and let {By,..., Bs} = BI(G|b), so
that

t s
Do = EBGZ(CG N Z(CN).
=1 7=1
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Assume that B € BI(G|b) and let x € Irr(B). Let 6 € Irr(N) be under x. By

Proposition 7.6,
s t
1:("))( (Z fB]-) = Wy (Zfbl>
j=1 i=1

which implies that 6 lies in one of the b;’s. This shows that (i) imples (ii).

Now if (iii) for x € Irr(B), let # be under x and in Irr(b). Then again by
Proposition 7.6 we have

which shows that w, has to lie in one of the B;’s, and we are done.

To prove the result for Brauer characters, notice that if y € Irr(B) then (x%)n =
(xn)°. Then for ¢ € IBr(B) and 6 € IBr(N) under y, we take x with dy, # 0
and there is some constituent n of xx such that d,p # 0, so we use the version
of the proof for ordinary characters. (I

We obtain the following corollary (an analogue of Clifford’s theorem).

COROLLARY 7.8. If by,be € BI(N) are covered by B € BI(G) then by and be are
G-conjugate.

Now we go the other way.

PROPOSITION 7.9. Let b € BI(IN) be covered by B. For all 6 € b there is x € B
lying over 6.

PROOF. Assume first that 6 is an ordinary character. Let x € Irr(B) and 7 €
Irr(b) be under x (by Theorem 7.7 this character exists). Now € and 7 lie in the
same block so they are connected in the linking graph (while perhaps not being
linked).

Assume first that 7 and 0 are linked. Let ¢ € IBr(b) be such that d,, # 0 # dg,.
Then (xn)" contains ¢. Therefore there is some constituent v € IBr(B) of x"
lying over . Now 6 also contains ¢ so we may write

(9G)0 _ (90)G _ QOG +A
where A is a Brauer character or zero. Now recall that since N < G, Clifford’s
theorem implies that v is an irreducible constituent of ¢“, so there is an ir-
reducible constituent ¢ € Irr(G) of #% such that £° contains 1. We have that

¢ € Irr(B) because ¢ € IBr(B), and ¢ lies over 0, and we have shown that there
is a character in B lying over 6.
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Now if  and 6 are not linked, then there are
N="Tlye..,Tn =10

characters of Irr(b) such that 7; is linked to 7,41, and we can argue by induction
and apply the previous argument to conclude the theorem.

Finally, if 6 € IBr(b) then let v € Irr(b) with d,y # 0 and let x € Irr(B) lie over
7. Then some constituent of x° lies over # and we are done. O

COROLLARY 7.10. Suppose that G/N is a p-group. If b € BI(IN) then there is a
unique B € BI(G|b).

Proor. Use Proposition 7.9 and Green’s theorem. O

PROPOSITION 7.11. Let B € BI(G) and b€ BI(N). Then B covers b if and only
if \B(€lg(z)™) = \(Clg(x)h) for all z € N.

Proor. By Problem 7.4 we may write
S =Y
BeBI(G|b) i=1
where {b1,...,b:} is the G-orbit of b.

Assume first that B covers b and let 6 € Irr(b) and x € Irr(B) lying over #. Then
A = Ay and Ay = Ag. For all z € IV, using Proposition 7.6 we have that

wy (Clg(x)") = wy(Clg(x)™)

A5 (Cla(@)h) = wy (Cla(@)")* = wo(Cla(@)™)* = M(Cla(z)h).

Conversely suppose that Ap(€lg(z)T) = Ap(Clg(z)t) for all x € N. Since
ZBeBl(G|b) ep = 2221 ep, € Z(FG) nZ(FN), by Problem 7.5 we have that

t
AB Z e | =N\ (Z ebi) =1
)

BeBI(Glb i=1

because b is one of the b;’s. It follows that B is one of the blocks in BI(G|b). O

7.2. The Fong—Reynolds correspondence
The Fong-Reynolds correspondence is the analogue of the Clifford correspon-

dence for blocks.

THEOREM 7.12. Let b e BI(V).
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48 7.2. The Fong—Reynolds correspondence

(i) The map
BI(Gy|b) — BI(G|b)
B — B¢
s a bijection.
(ii) If B € BI(Gy|b) then
Irr(BY) = (% | ¢ € Irr(B)} and IBr(BY) = {¢° | ¢ € IBr(B)}.

(iii) Every defect group of B is a defect group of BC.
(iv) If x € Irr(B) then hy = hyc

SKETCH OF PROOF Recall that for any 6 € b we have Gy < Gy. Let B € BI(Gy|b)
and ¢ € Irr(B) (the argument for Brauer characters is the same). Then there
is an irreducible constituent 6 of ¥ in b. By the Clifford correspondence (for
ordinary characters), ) = n& for some 7 € Irr(Gg|6). Thus ¥& = n% e Irr(G|0)
again by the Clifford correspondence. By Corollary 5.3, B is defined and
contains 9“, and B also covers b (because ¥ lies over ). We have shown that
every 1 € Irr(B) induces irreducibly to a character in BE.

Now if ¢ € IBr(B) we can argue as before to show ¢“ € IBr(G). We want to
show that ¢ is also in B®. Let # € IBr(N) lie under ¢ and let € IBr(Gg) be
its Clifford correspondent, so that n% = ¢“. Now by Proposition 6.4 we have
®, = (®,)%. Then

G = ((@,))° = (2,)9 = P, 0 = D0.

Now
Qo6 = <I>G Z dwu
pelrr(B)
and every u© e Irr(BY), so d,c,c # 0 for some pC e Irr(BY), so ¢ € IBr(B%).
With these ideas one can end up showing that this thing is indeed a bijection
(notice that we have not proven injectivity nor surjectivity) and conclude (i)

and (ii) (the decomposition numbers by arguing as before with the projective
indecomposable character).

For the defect groups, notice that by Lemma 4.4 a defect group D of B is
contained in a defect group Q of B¢. Now

|G : Qlp = min{y:9(1), | ¢ € Ir(B)} = |G : Gylpmin{yy(1), | ¢ € Irr(B)} =
|G Gb|p|Gb D|p |G D|p

and we conclude that D = Q.
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7. Blocks and normal subgroups 49

Finally the heights. Let B € Bl(Gy|b) and ¢ € Irr(B) and let D be a defect
group of B. Then by the definition of height

v(¥(1)) = v(IGs|) — v(ID]) + hy
v(|G]) = v(ID]) + hya = v (1)) = v(IG : Gy|) + v(¥(1)) =
= v(|G : Gol) + v(|Gy]) — v(|ID]) + hy = v(|G]) = v(ID]) + hy
as desired. O

A big warning: even if we have a defect group of B¢ contained in Gy, it is not
necessarily a defect group of B!
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LECTURE 8

Blocks and normal subgroups II

8.1. Block domination

Recall that if N< G, we identify Irr(G/N) and IBr(G/N) as subsets of characters
in Irr(G) and IBr(G) containing N in their kernel via x(z) — X(xN). Notice
that if 2 € GY then

Y dew@) =x@) =X@N) = Y dgieN)= ) dgn)

¢€eIBr(G) nelBr(G/N) nelBr(G/N)

and since IBr(G) is a linearly independent set, we conclude that dy = dyy.
There are two consequences.

COROLLARY 8.1. If x € Irr(G) contains N in its kernel, then so does every
¢ € IBr(G) with dy, # 0.

COROLLARY 8.2. If B € BI(G/N) then there exists a unique block B € BI(G)
with B < B.

DEFINITION 8.3. We say B € BI(G) dominates B € BI(G/N) if B < B.

Write G = G/N. Then for any ring A we have a natural algebra homomorphism
: AG — AG
Z agg — Z aggN
Notice that ep is either 0 or it is a central idempotent of F G. If eg # 0 then
there exist By, ..., By € BI(G) such that

7B:e§1+...+e§t'

PROPOSITION 8.4. The block B dominates B if and only if €g contains eg (if
and only if Az(ep) = 1).

PRrROOF. Under the natural homomorphism CG — CG we have that ey > ey as
long as x € Irr(G/N) and &, = 0 otherwise.
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52 8.1. Block domination

Now let X € Irr(B). We have that Az(eg) = 1 if and only if
0#we( ), &) =we( ) ep)

Yelrr(B
elrr(B) Néker((’lb))

which happens if and only if  is one of the ¢ € Irr(B) with N < ker(y). This
happens if and only if B < B. O

Notice that if B dominates B then for z € Z(FG) we have
Ap(2) = Ap(2)

(this is because the composition of and Az is an homomorphism Z(F'G) — F,
so it must be Ap.)

THEOREM 8.5. Let N < G and write G = G/N.
(i) If B < B € BI(G) where B € BI(G), then for any D € §(B) there is
P e §(B) with D < PN/N.
(ii) If N is a p-group then for any block B € BI(G) there is B € BI(G) with
B < B, and §(B) = {P/N | P € §(B)}.

(iii) If N is a p'-group and B < B then Irr(B) = Irr(B), 1Br(B) = IBr(B)
and §(B) = {PN/N | P € §(B)}

PROOF. Let Clg(x) be a defect class for B, so that €l5(Z) is the conjugacy class
of T =zN in G. Write €lg(Z) = {z1,...,T,} and notice that

S

Cla(x) = [ [(@la(@) na:N).
i=1
Furthermore, if g € G then
(Clg(z) nzN)? = Clg(x) naIN
and it follows that
t:=|Clg(z) naN| = |Clg(z) N xIN|
and it follows that |€lg(z)| = t|€l=(T)], so

Clg(z)t = t€lg(T)".
Write C/N = C(T), so that |G : C| = |€l(T)|. Then
i)
|Cl(T)|

Since €lg(x) is a defect class for B we have Ap(€lg(x)*) # 0. Using that B
dominates B,

¢ —|C: Ca(z)].

0 # Ap(Clg(z)") = Ag(Cla(z)*) = A5(t€IE(T) ) = t* A\g(ClE(T)™)
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8. Blocks and normal subgroups II 53

and it follows that ¢ # 0 mod p. In particular, a Sylow p-subgroup of Cg(x)
is a Sylow p-subgroup of C. Further, since A\z(Clz(T)*) # 0 we have that
D < X € Syl,(C/N) by the Min-Max theorem. By the Sylow theorems and the
previous comment, there is P € Syl (Cg(z)) with D = X < PN/N and part
(a) is proved.

For part (b) notice that N is contained in the kernel of every Brauer character,

so there are blocks Bi, ..., B; of G with
t
IBr(B) = [ [1Br(B)).
i=1

We can now use part (a) and the fact that
v(IG]) — d(B) = min{v(p(1)) | ¢ € IBr(B)}
(see Problem 3.6) to get the result on the defect groups.

For part (c) notice that if B € B then if x € Irr(B), viewed as a character of B
it lies over 1y and therefore B covers bl(1y) which only contains the ordinary
(and modular) character 1. It follows that every x € B contains N in its kernel
and the result follows. g

Observe that the difference between cases (ii) and (iii) is that when N is a
p-group, B is guaranteed to dominate a block of G/N.

8.2. Blocks of PCg(P)
LEMMA 8.6. Assume be BI(N) is such that b is defined. Then bC covers b.

Proor. By Proposition 7.11 we only have to check that A, and )\f coincide in
Clg(x)T for x € N. Now

Ay (€lg(2) ™) = M ((Clg(z) 0 N)T) = N (Cla(z)T)

and we are done. O

For the next result we need a property of induced blocks which is left as a
problem.

PROBLEM 8.7. Let K < H < G. Let be BI(K) and assume b is defined. Then
b is defined if and only if (V7)) is defined. In this case, b = (bH)C.

THEOREM 8.8 (Extended first main theorem). If B € BI(G|D) then there is a
unique Ng(D)-orbit of blocks of DCg(D) inducing B, and all of them have de-

fect group D. Moreover, if b is such a block, bN¢(P) is the Brauer correspondent
of B.
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54 8.2. Blocks of PCg(P)

PRrOOF. Let B € BI(G|D). By Theorem 4.5 we know there is b € BI(DCg(D))
with b% = B. Since D<t DC¢(D) we have that D is contained in a defect group P
of b. Since bN¢(P) is also defined by the same result, we have that P si contained
in a defect group @ of ¥N¢(P), By the previous problem, (bN¢(P)G = p¢ — B
and therefore @) is contained in a G-conjugate of D. We conclude that b and
bNe(D) have defect group D. It follows that bN¢(P) is the Brauer correspondent
of B.

It remains to prove that all these blocks are N¢(D)-conjugate. Let by, bs €
BI(DCg(D)) inducing B, so that bll\IG(D) = bQNG(D) is the Brauer correspondent
of B. By Lemma 8.6 bN¢(P) covers by and by so they are Ng(D)-conjugate. [

The blocks b € BI(DCg(D)) inducing B are called roots of B. The remaining
part of this lecture consists on studying their structure. Unfortunately, we omit
the proof of the following refinement of Theorem 8.5 in this special case.

PROPOSITION 8.9. Assume G has a normal p-subgroup P and G/Cg(
group. Write G = G/P. The map BI(G) — BI(G) defined by B — B
is a bijection. Moreover, Cp = |P|Cg.

P) is a p-
if BC B

We need to invoke a result which is a consequence of Brauer’s second main
theorem, which we have not even stated. I am pretty sure that, for normal
defect groups, there has to be an easier proof.

THEOREM 8.10. Let x € Irr(B) where B € BI(G). If g, is not contained in any
defect group of B then x(g) = 0.

PROOF. See [Nav98, Theorem 5.9]. O

The following is an example of what is known as a nilpotent block. These
were defined by Broué and Puig in a very influential paper, by extending the
classical Frobenius theorem on normal p-complement for blocks. The case of the
following theorem is a very particular case of this type of blocks.

THEOREM 8.11. Let P be a p-subgroup of G, let B € BI(G|P), and assume
G = Cg(P)P. The following hold.
(i) There is a unique 6 € Irr(B) with P < ker(0), and in fact
0(1), = |G : Plp.

(ii) IBr(B) = {#"}.
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(iii) The map
Irr(P) — Irr(B)
£— 0

is a bijection, where ¢ is deifned as 6¢(g) = 0(gy)E(gp) if gp € P and
0¢(g) = 0 otherwise.

PROOF. Let B be the unique block of G/P dominated by B. By Proposition
8.9, B has trivial defect group, so it has defect zero. Thus Irr(B) = {#} and
IBr(B) = {#°}. and the first two parts are proved.

Notice that G acts trivially on Irr(P), because G = PCg(P). By Clifford’s
theorem, if y € Irr(P) then we may write xp = e for some £ € Irr(P). Since P
is the unique defect group of B, by Theorem 8.10 we have x(g) = 0 if g, ¢ P.

We consider now the case g, € P. Since G/Cg(P) is a p-group, every p-regular
element is contained in Cg(P) so it commutes with P. Thus H := (g, P) =
{gp) x P. Write

Xu= >, ayb.

Yelrr(H)
Since xp = e£ then the constituents of x g are of the form A x £, so we can write
XH = Xx§

where o = €X{g,>- This implies that x(g,) = a(gy)&(1). Also, since g € H,

— alas :X(gp’)
x(9) = a(gy)€(gp) ) §(9p)-

Now recall that 6° is the unique Brauer character of B. It follows that x(g,) =
d\go8(gy) where d,g0 = x(1)/0(1), so

d, g0

£(1)

(8.2.1) x(9) = (9 )€ (gp)-

We now need to use two easy to prove group theoretical facts which we leave to
the reader. First, since G° = Cg(P) we have that the map

G'xP—{geG|gyeP}
(z,y) — zy
is a bijection. The map
G" - (G/P)"
x—zP

is also a bijection.
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56 8.2. Blocks of PCg(P)

Using the first bijection and that X( ) = 0if g, ¢ P we compute

[x: x] |G‘ geG ‘G’ ;G:
_ (e 1) —
‘(5()! % 3 s et

meP yeGO

_ (dw)” oo™ [ Y s ) -
v/ 16l &, 5
dyg0

- (m) o 2%

yeGO

Recall that 0 has defect zero as a character of G/P, so it vanishes in the p-singular
conjugacy classes of G/P. Thus

1 1 1
9 9 _lzj 0707_1:j 9797_1:
G P yEEGO )o(y~") Gl &, o) a = @0 )
— [0,6] =

2
so rewritting the above expression we obtain 1 = [y, x| = ( 5(1;> SO

x(1)/6(1) = dygo = £(1).
By going back to Equation 8.2.1 we see that x(g) = (g )&y (gp) for a uniquely
determined &, € Irr(P). It remains to show that x — &, is a bijection. The fact
that it is injective is immediate (x is totally determined by 6 and &).

Using again that 6 has defect zero as a character of G/P, the Cartan matrix of
bl(#) € BI(G/P) is just (1). By using the last part of Proposition 8.9, the cartan
matrix of B is (|P|). Thus

Pl= > (@)= > &1)°< ) =P
x€lrr(B) x€lrr(B) T€lrr(P)

and it follows that the map is surjective. O

The character 6 from the previous proposition is known as the canonical char-
acter for B, and it is determined up to N¢g(D)-conjugation.

COROLLARY 8.12. In the above situation, the set of heights of B is {v(§(1)) |
¢elr(P)}.
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LECTURE 9

Blocks and normal subgroups III

For the final lecture of the course, we prove Brauer’s height zero conjecture for
blocks with normal defect group, and we use this as an excuse to introduce
even more results on block coverings. A bit of the history and lore around the
conjecture will be introduced in Section 9.3.

9.1. Covering blocks and defect groups

We begin by proving some results of Fong on the relation between the defect
groups of blocks of G and the blocks they cover in some N < G.

Recall that if b € BI(N) then by Problem 7.4

t

S ew=Ye

B'eBI(G|b) i=1

where {ep,,...,ep,} is the set of G-conjugates of b. Now the elements e, are
linear combinations of €ly(z)" for x € G, but since the elements ep: are sums
of €lg(y) for y € G, it follows that we may write

D= > w(z)Clg(x)t.

B'eBI(G]b) 2eG/~
zeN

PROPOSITION 9.1. Let b e BI(N) and let B € BI(G|b). Write
doem =) w(@)€lg(z)*

B/eBI(Gb) 2eG/~
zeN

as before. Then there is some x € N with up(x) # 0 # Ap(Clg(z)T). Moreover
if d(B) = d(B') for all B" € BI(G|b) then 6(€lg(x)) = §(B).

Proor. We have
1=MXp Z e | = A\p Z up(z)€lg(z)*
B’eBI(G|b) 2€G/~

so the first part follows.
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58 9.1. Covering blocks and defect groups

Assume now that d(B) > d(B’) for all B’ € BI(G|b). Since Ap(€lg(z)T) # 0, by
the Min—Max theorem we have that if D € §(€lg(z)), there is some P € §(B)
with P € D. Now, since

ep = Y. ap(Ca(x))Clg(r)”
zeG/~
SO

Yooem= D D ap(Cla(r)Cig(z)t =

B/eBI(G]b) B'eBI(G|b) zeG/~
= > D ap(C@)egx)t
z€G/~ B’eBl(G|b)
it follows that

up(z) = Z ap (Clg(x))

B'eBI(G|b)
so there is some By € BI(G|b) with
ap,(Clg(z)) # 0
and from the Min—Max theorem it follows that
P < D c Pyed(By).

Since d(B) > d(Bp) this implies |P| > |Py| which forces P = D = Py, and
Ded§(B). 0

THEOREM 9.2 (Fong). Let b e BI(N) be G-invariant and assume B € BI(G|b) is
such that d(B) = d(B’) for all B' € BI(G|b). If P € §(B) we have that p does
not divide |G : PN| and P n N € 6(b).

PRroOF. First notice that, arguing as before,

=Y, em= Y u(@)Clg(z)".

B’eBI(G|b) 2/~
xTE

Notice further that

=, a(Cyy)ein(y)*
yeN/~

and it follows that up(y) = ap(€ly(y)) for all y € N.
By Proposition 9.1, there is some z € N with up(z) # 0 # Ap(€lg(z)™) and
P e (€lg(x)). Now

Clg(x) = | eiy(x)?

geG
so Clg(x) is the union of a t different G-conjugates of €l (x). More precisely,
_ [@e(@)] _ |GlICn(2)] |GlICN ()]

t = = |G : NCg(z)|.

_[€v(@)]  [N[[Cq(z)] [NCg(2)|[Ca(z) n N|
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Recall that Ape (Cly(z)") = A\p((€ly(2)T)9). Since b is G-invariant, it follows
that A\p(Cly(z)™) = \((Cly(z)T)9). By Passman (Proposition 7.11)
0# Ap(Cla(z)™) = M (Clg(x) ") = t* N (Cly(2)T)
so we deduce that p does not divide ¢t = |G : NCg(x)|. Since P € Syl,(Cg(z)),
it follows that p does not divide |G : NP|. Furthermore,
ab(C[N(QZ)) = ub(ﬂs) #0
and it follows that
ap(Cly(x)) # 0 # Ap(Cly(2) ")

so Cly(x) is a defect class for b. Now Cg(z) n N = Cy(z) and P n N €
Syl,(Cn(x)) so P n N € 4(b). O

The fact that P n N € §(b) from the previous theorem is in fact true even if we
do not assume b is G-invariant. This is a (harder to prove) theorem of Knorr
[Nav98, Theorem 9.26].

9.2. Regular blocks

We say a block B € BI(G) is regular with respect to N < G if Ag(€lg(z)") =0
for every x ¢ N. Notice that this does not involve any blocks of N!

PROPOSITION 9.3. Assume B € BI(G) covers be BI(N). Then B is reqular with
respect to N if and only if b° is defined and b¢ = B.

PROOF. Assume b¢ is defined and 6% = B. If 2 € G\N then €lg(z) n N = (.
We have

A (@) ) = M((€la(@) 0 N)T) =0
and since B = b we have Ap(€lg(z)") = 0 for all x € G\N. By definition, B is
regular with respect to V.

Assume now that B is regular. If z € G\N then it follows arguing as before that
A (Clg(z)™) = Ap(€lg(z)T) = 0. If z € N then by Passman (Proposition 7.11)
we have

A (@la(z)t) = M((Clg(z) n N)Y) = A (Cla(x)T) = Ap(€lg(z)h)

and we conclude )\f = AR, so we are done. O

PROPOSITION 9.4. Let B € BI(G|D). If Cq(D) < N then B is regular with
respect to N.

PROOF. Let x € G and assume Ag(Clg(z)") # 0. By the Min—Max theorem
we have that D € P € 6(€Clg(x)) which means that D € Cg(z), which implies
x € Cg(D). By hypothesis, © € N, so Ap must vanish in the conjugacy classes
outside N. O
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COROLLARY 9.5. Let Q< G be a p-subgroup and let b e BI(QCg(Q)). Then b%
is the unique block of G which covers b.

PRrOOF. We know from Theorem 4.5 that b¢ is defined, and from Lemma 8.6
that b covers b. Let B € BI(GJb). Since Q < G it follows that Q € O,(G) <
D e §(B). This implies that Cq(D) < Cq(Q) < QCq(Q) and by Proposition
9.4, B is regular with respect to QCq(Q). Now Proposition 9.3 implies that
b¢ = B as desired. O

THEOREM 9.6. Let b e BI(DCq(D)|D) and let T be the stabilizer of b in Ng(D).
Then b has defect group D if and only if |T : DCq(D)| is not divisible by p.

PROOF. First, we claim that we may assume D < G. In other words, we claim
that b% has defect group D if and only if 8N¢(P) has defect group D. If b% has
defect group D then so does b (for example, argue as in the first part of the
Extended first main theorem) and by the same result, b™N¢ (D) has defect group
D. Conversely, if bN¢(P) has defect group D then using that (BN¢(P)HG = p&
we have that b has defect group D by Brauer’s first main theorem.

Next we claim that we may assume b is G-invariant (now D<1 G so DCq(D)< G).
Now for any DCq(D) < H < G we have that b/ is defined and covers b by
Theorem 4.5 and Lemma 8.6. In particular both b7 and b“ cover b. Now (b7)¢
is defined by the Fong-Reynolds theorem and (b7)% = b, so b” is the Fong-
Reynolds correspondent of b“ over b. Since the defect groups of b” are defect
groups of b, and D < G it follows that §(bT) = {D} if and only if §(b¥) = {D},
so we are done (we are using that if a defect group of a block is normal then it
is the unique defect group of a block).

Therefore D < G and b is G-invariant. By Corollary 9.5, b“ is the unique block
covering b. b® satisfies the hypothesis on maximal defect in Fong’s theorem
9.2 and we deduce that if P € §(b%) we have P n DCg(D) € 6(b) = {D}, so
PCg(D)D = PCg(D) and |G : PCg(D)| is not divisible by p. Since P n
Ca(D)D = D it follows that D < P if and only if DCg(D) < PCg(D) (indeed,
if DCq(D) = PCq(D) then P < DCg(D) n P = D). Therefore p does not
divide |G : DC¢(D)| if and only if D = P. O

9.3. Brauer’s height zero conjecture

Stated in 1955 by Richard Brauer (and also included as part of Problem 23 of
his famous list of problems), Brauer’s height zero conjecture states that

CONJECTURE 9.7. Let B € BI(G|D). Then Irr(B) = Irrg(B) if and only if D is
abelian.

We prove now the case where D <« (G, a theorem due to W. F. Reynolds from
1963.
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THEOREM 9.8 (Reynolds). Let B € BI(G|D) and assume D<t G. Then Irr(B) =
Irrg(B) if and only if D is abelian.

PRrROOF. We argue by induction on |G]|.

Let b € BI(DCg(D)|D) be a root of B and let T be its stablizer in G and B’
the Fong—Reynolds correspondent of B in T. Since the defect groups of B’ are
defect groups of B, if T < G then by induction, all characters of B’ have height
zero, and by the Fong—Reynolds correspondence, so do all characters of B. Thus

we may assume b is G-invariant. In particular, it follows from Theorem 9.6 that
|G : DCq(D)| is p'.

Next we claim that the set of heights of characters in B coincides with the set
of characters in b. Indeed, let x € Irr(B). Since b = B then we have that B
covers b by Lemma 8.6. Now if y € Irr(B) then any 6 under x lies in Irr(b). We
have that x(1)/0(1) divides |G : DCq(D)|, a p’-number. Thus x(1), = 6(1),.
Conversely if 0 € Irr(b) we know there is x € Irr(B) lying over 6, and arguing in
the same way we get 6(1), = x(1),. We conclude that

{x(Dp [ x € Irr(B)} = {0(1), | 0 € Irr(b)}

and the claim follows. In particular, Irr(b) = Irrg(b) if and only if Irr(B) =
Irrg(B).

Now by the Corollary 8.12 of Theorem 8.11 we know that the set of heights of
b is exactly {v(£(1)) | £ € Irr(D)}. It follows that Irr(B) = Irrg(B) if and only if
Irr(b) = Irrg(b) if and only if every character in Irr(D) is linear, which happens
if and only if D is abelian. ]

For the past 70 years, Brauer’s height zero conjecture has been a central problem
in the modular representation theory of finite groups. It was proved for p-solvable
groups by D. Gluck and T. R. Wolf in 1984, in an already extremely complicated
theorem involving group actions and orbit sizes. There is a whole book [MW93]
devoted to the techniques involved in this proof (and related ones).

In 1988, T. Berger and R. Knorr proved that the “if” direction holds for every
finite group provided that it holds for finite simple groups. This was finally
proved by R. Kessar and G. Malle in 2013 in a widely celebrated paper.

In 2014, G. Navarro and B. Spéath gave an extremely technical reduction theorem

for the “only if” direction. We introduce some context:

CONJECTURE 9.9 (Alperin-McKay). If b is the Brauer correspondent block of B
then | Irrg(B)| = | Irro(b)].

The Alperin—-McKay conjecture was reduced to a problem on simple groups
(known as the inductive Alperin-McKay conjecture) by B. Spéth in 2011. It is
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one of the most important counting conjetures in our field. It was generalized
to a much more general conjecture known as Dade’s projective conjecture.

G. Robinson proved that, assuming Dade’s projective conjecture, one could find
certain bijections above height zero characters of Brauer correspondent blocks.
M. Murai (who I believe was either an accountant or a high school teacher)
proved that using this bijection, Brauer’s height zero conjecture holds. The
reduction theorem of Navarro and Spéath states that, if the inductive Alperin—
McKay conjecture holds for every finite simple group, then this bijection exists
and therefore Brauer’s height zero conjecture holds. In 2022 L. Ruhstorfer proved
the inductive Alperin—-McKay conjecture for p = 2, and as a corollary obtained
Brauer’s height zero conjecture for this prime (this paper was accepted recently
in the Annals of Mathematics).

For odd primes the proof remained a challenge, as well as the proof of the in-
ductive Alperin—-McKay conjecture. Using a different reduction theorem and
different conditions on finite simple groups, G. Malle, G. Navarro, A. A. Scha-
effer Fry and P. H. Tiep were able to prove the “only if” direction for odd
primes, thereby settling Brauer’s height zero conjecture. This paper has also
been accepted recently in the Annals (hopefully the graduate students reading
this understand that this is an unbelievable achievement and out of reach for
the vast majority of mathematicians).
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